• Codeforces 1252D Find String in a Grid SA + BIT


    Find String in a Grid

    把矩阵按行接起来求一个SA,

    把矩阵按列接起来求一个SA,

    然后就枚举询问串的转折点, 转换成求矩阵内二维数点的个数。

    #include<bits/stdc++.h>
    using namespace std;
    
    const int N = (int)7e5 + 7;
    const int LOG = 20;
    
    int Log[N];
    struct SA {
    int sa[N], rk[N], ht[N], s[N << 1], t[N << 1], p[N], cnt[N], cur[N];
    int rmq[N][LOG];
    #define pushS(x) sa[cur[s[x]]--] = x
    #define pushL(x) sa[cur[s[x]]++] = x
    #define inducedSort(v) 
        fill_n(sa, n, -1); fill_n(cnt, m, 0);                                     
        for (int i = 0; i < n; i++) cnt[s[i]]++;                                  
        for (int i = 1; i < m; i++) cnt[i] += cnt[i-1];                           
        for (int i = 0; i < m; i++) cur[i] = cnt[i]-1;                            
        for (int i = n1-1; ~i; i--) pushS(v[i]);                                  
        for (int i = 1; i < m; i++) cur[i] = cnt[i-1];                            
        for (int i = 0; i < n; i++) if (sa[i] > 0 &&  t[sa[i]-1]) pushL(sa[i]-1); 
        for (int i = 0; i < m; i++) cur[i] = cnt[i]-1;                            
        for (int i = n-1;  ~i; i--) if (sa[i] > 0 && !t[sa[i]-1]) pushS(sa[i]-1);
    void sais(int n, int m, int *s, int *t, int *p) {
        int n1 = t[n-1] = 0, ch = rk[0] = -1, *s1 = s+n;
        for (int i = n-2; ~i; i--) t[i] = s[i] == s[i+1] ? t[i+1] : s[i] > s[i+1];
        for (int i = 1; i < n; i++) rk[i] = t[i-1] && !t[i] ? (p[n1] = i, n1++) : -1;
        inducedSort(p);
        for (int i = 0, x, y; i < n; i++) if (~(x = rk[sa[i]])) {
            if (ch < 1 || p[x+1] - p[x] != p[y+1] - p[y]) ch++;
            else for (int j = p[x], k = p[y]; j <= p[x+1]; j++, k++)
                if ((s[j]<<1|t[j]) != (s[k]<<1|t[k])) {ch++; break;}
            s1[y = x] = ch;
        }
        if (ch+1 < n1) sais(n1, ch+1, s1, t+n, p+n1);
        else for (int i = 0; i < n1; i++) sa[s1[i]] = i;
        for (int i = 0; i < n1; i++) s1[i] = p[sa[i]];
        inducedSort(s1);
    }
    template<typename T>
    int mapCharToInt(int n, const T *str) {
        int m = *max_element(str, str+n);
        fill_n(rk, m+1, 0);
        for (int i = 0; i < n; i++) rk[str[i]] = 1;
        for (int i = 0; i < m; i++) rk[i+1] += rk[i];
        for (int i = 0; i < n; i++) s[i] = rk[str[i]] - 1;
        return rk[m];
    }
    // Ensure that str[n] is the unique lexicographically smallest character in str.
    template<typename T>
    void suffixArray(int n, const T *str) {
        int m = mapCharToInt(++n, str);
        sais(n, m, s, t, p);
        for (int i = 0; i < n; i++) rk[sa[i]] = i;
        for (int i = 0, h = ht[0] = 0; i < n-1; i++) {
            int j = sa[rk[i]-1];
            while (i+h < n && j+h < n && s[i+h] == s[j+h]) h++;
            if (ht[rk[i]] = h) h--;
        }
        for(int i = 1; i < n; i++) rmq[i][0] = ht[i];
        for(int j = 1; j <= Log[n - 1]; j++) {
            for(int i = 1; i + (1 << j) <= n; i++) {
                rmq[i][j] = min(rmq[i][j - 1], rmq[i + (1 << j - 1)][j - 1]);
            }
        }
    }
    inline int getLcp(int L, int R) {
        assert(L < R);
        L++;
        int k = Log[R - L + 1];
        return min(rmq[L][k], rmq[R - (1 << k) + 1][k]);
    }
    inline pair<int, int> getLR(int p, int n, int len) {
        pair<int, int> LR(p, p);
        int low, high, mid;
        low = 1, high = p - 1;
        while(low <= high) {
            mid = low + high >> 1;
            if(getLcp(mid, p) >= len) LR.first = mid, high = mid - 1;
            else low = mid + 1;
        }
        low = p + 1, high = n;
        while(low <= high) {
            mid = low + high >> 1;
            if(getLcp(p, mid) >= len) LR.second = mid, low = mid + 1;
            else high = mid - 1;
        }
        return LR;
    }
    } S[2];
    
    struct Bit {
        int a[N];
        inline void modify(int x, int v) {
            for(int i = x; i < N; i += i & -i) {
                a[i] += v;
            }
        }
        inline int sum(int x) {
            int ans = 0;
            for(int i = x; i; i -= i & -i) {
                ans += a[i];
            }
            return ans;
        }
        inline int query(int L, int R) {
            return sum(R) - sum(L - 1);
        }
    } bit;
    
    int sa_len[2];
    int n, m, q, ans[N];
    int pos[2][507][507];
    char Map[507][507];
    char t[2][N];
    char str[N];
    vector<int> P[2][N];
    
    struct Qus {
        int l, r, op, id;
    };
    vector<int> Y[N];
    vector<Qus> Q[N];
    
    int main() {
        for(int i = 2; i < N; i++) Log[i] = Log[i >> 1] + 1;
        scanf("%d%d%d", &n, &m, &q);
        for(int i = 0; i < n; i++) scanf("%s", Map[i]);
        for(int i = 0; i < n; i++) {
            for(int j = m - 1; j >= 0; j--) {
                pos[0][i][j] = sa_len[0];
                t[0][sa_len[0]++] = Map[i][j];
            }
            t[0][sa_len[0]++] = '$';
        }
        for(int j = 0; j < m; j++) {
            for(int i = 0; i < n; i++) {
                pos[1][i][j] = sa_len[1];
                t[1][sa_len[1]++] = Map[i][j];
            }
            t[1][sa_len[1]++] = '$';
        }
        for(int i = 1; i <= q; i++) {
            scanf("%s", str);
            int len = strlen(str);
            P[0][i].resize(len);
            P[1][i].resize(len);
            for(int j = len - 1; j >= 0; j--) {
                P[0][i][j] = sa_len[0];
                t[0][sa_len[0]++] = str[j];
            }
            for(int j = 0; j < len; j++) {
                P[1][i][j] = sa_len[1];
                t[1][sa_len[1]++] = str[j];
            }
            t[0][sa_len[0]++] = '$';
            t[1][sa_len[1]++] = '$';
        }
        t[0][sa_len[0]] = '';
        t[1][sa_len[1]] = '';
        S[0].suffixArray(sa_len[0], t[0]);
        S[1].suffixArray(sa_len[1], t[1]);
        for(int i = 1; i <= q; i++) {
            for(int j = 0; j < (int)P[0][i].size(); j++) {
                pair<int, int> xLR = S[0].getLR(S[0].rk[P[0][i][j]], sa_len[0], j + 1);
                pair<int, int> yLR = S[1].getLR(S[1].rk[P[1][i][j]], sa_len[1], (int)P[0][i].size() - j);
                Q[xLR.first - 1].push_back(Qus{yLR.first, yLR.second, -1, i});
                Q[xLR.second].push_back(Qus{yLR.first, yLR.second, 1, i});
            }
        }
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < m; j++) {
                int x = S[0].rk[pos[0][i][j]];
                int y = S[1].rk[pos[1][i][j]];
                Y[x].push_back(y);
            }
        }
        for(int i = 1; i <= sa_len[0]; i++) {
            for(auto &y : Y[i]) bit.modify(y, 1);
            for(auto &q : Q[i]) ans[q.id] += q.op * bit.query(q.l, q.r);
        }
        for(int i = 1; i <= q; i++) printf("%d
    ", ans[i]);
        return 0;
    }
    
    /**
    **/
  • 相关阅读:
    快速上手Unity原生Json库
    Unity3D安卓出包报错
    Git快速入门
    [Modern OpenGL系列(四)]在OpenGL中使用Shader
    [Modern OpenGL系列(三)]用OpenGL绘制一个三角形
    [Modern OpenGL系列(二)]创建OpenGL窗口
    [Modern OpenGL系列(一)]十步搞定OpenGL开发环境
    [Unity游戏开发]向量在游戏开发中的应用(三)
    [Unity游戏开发]向量在游戏开发中的应用(二)
    【leetcode】-两数之和
  • 原文地址:https://www.cnblogs.com/CJLHY/p/11811640.html
Copyright © 2020-2023  润新知