• Codeforces 1182E Product Oriented Recurrence 矩阵快速幂


    Product Oriented Recurrence

    先化简原式子

    c ^ x * f[x]  = c ^ (x-1) * f[x-1] * c ^ (x-2) * f[x-2] * c ^ (x-3) * f[x-3]

    及g[x] = c ^ x * f[x]

    g[x] = g[x-1] * g[x-2] * g[x-3]

    然后用矩阵快速幂计算g1, g2, g3的贡献, 计算出gn 之后 转回 fn

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 1e5 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;}
    
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    
    LL power(LL a, LL b) {
        LL ans = 1;
        while(b) {
            if(b & 1) ans = ans * a % mod;
            a = a * a % mod; b >>= 1;
        }
        return ans;
    }
    
    int MOD = (int)1e9 + 6;
    
    struct Matrix {
        int a[3][3];
        Matrix() {
            memset(a, 0, sizeof(a));
        }
        void init() {
            for(int i = 0; i < 3; i++) {
                a[i][i] = 1;
            }
        }
        Matrix operator * (const Matrix &B) const {
            Matrix C;
            for(int i = 0; i < 3; i++) {
                for(int j = 0; j < 3; j++) {
                    for(int k = 0; k < 3; k++) {
                        C.a[i][j] += 1LL * a[i][k] * B.a[k][j] % MOD;
                        if(C.a[i][j] >= MOD) C.a[i][j] -= MOD;
                    }
                }
            }
            return C;
        }
    
        Matrix operator ^ (LL b) {
            Matrix C; C.init();
            Matrix A = (*this);
            while(b) {
                if(b & 1) C = C * A;
                A = A * A; b >>= 1;
            }
            return C;
        }
    } M;
    
    int mat[3][3] {
        {1, 1, 1},
        {1, 0, 0},
        {0, 1, 0}
    };
    
    LL n, f1, f2, f3, c;
    
    int main() {
        for(int i = 0; i < 3; i++) {
            for(int j = 0; j < 3; j++) {
                M.a[i][j] = mat[i][j];
            }
        }
    
        scanf("%lld%lld%lld%lld%lld", &n, &f1, &f2, &f3, &c);
    
        Matrix ret = M ^ (n - 3);
    
        f1 = f1 * power(c, 1) % mod;
        f2 = f2 * power(c, 2) % mod;
        f3 = f3 * power(c, 3) % mod;
    
        LL ans = 1;
    
        LL cnt1 = ret.a[0][2];
        LL cnt2 = ret.a[0][1];
        LL cnt3 = ret.a[0][0];
    
    
        ans = ans * power(f1, cnt1) % mod;
        ans = ans * power(f2, cnt2) % mod;
        ans = ans * power(f3, cnt3) % mod;
    
    
        LL inv = power(power(c, n), mod - 2);
    
        ans = ans * inv % mod;
    
        printf("%lld
    ", ans);
    
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    Hive sql
    Hive严格模式
    Hive 分区表和分桶表
    hive
    Hive内部表与外部表区别详解
    HDFS
    Hadoop
    MySQL数据库优化
    Mysql常用存储引擎介绍
    Day12-Mysql服务日志类型及增量恢复命令
  • 原文地址:https://www.cnblogs.com/CJLHY/p/11223481.html
Copyright © 2020-2023  润新知