• HDU


    HDU - 5353

    为什么我在自己演自己啊, 加了个特判结果下一次正确的时候没有把图清空, 找了半天bug。

    先枚举一条边的状态就能推出全部, 输出过程用拓扑排序。

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 1e5 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;}
    
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    
    int n, a[N];
    int tmp[N];
    vector<int> G[N];
    vector<PII> ret;
    int deg[N];
    LL ave;
    int b[N];
    
    bool dfs(int u, int op) {
        int nex = (u + 1) % n;
        if(nex) {
            if(op == -1) {
                a[nex]++;
                a[u]--;
                G[u].push_back(nex);
                deg[nex]++;
                if(a[nex] == ave) return dfs(nex, 0);
                else if(a[nex] == ave + 1) return dfs(nex, -1);
                else if(a[nex] == ave - 1) return dfs(nex, 1);
                else return false;
            }
            else if(op == 0) {
                if(a[nex] == ave) return dfs(nex, 0);
                else if(a[nex] == ave + 1) return dfs(nex, -1);
                else if(a[nex] == ave - 1) return dfs(nex, 1);
                else return false;
            }
            else if(op == 1) {
                a[nex]--;
                a[u]++;
                G[nex].push_back(u);
                deg[u]++;
                if(a[nex] == ave) return dfs(nex, 0);
                else if(a[nex] == ave + 1) return dfs(nex, -1);
                else if(a[nex] == ave - 1) return dfs(nex, 1);
                else return false;
            }
        }
        else {
            if(op == -1) {
                a[nex]++;
                a[u]--;
                G[u].push_back(nex);
                deg[nex]++;
            }
            else if(op == 1) {
                a[nex]--;
                a[u]++;
                G[nex].push_back(u);
                deg[u]++;
            }
            return a[nex] == ave;
        }
    }
    
    bool solve() {
        ave = 0;
    
        for(int i = 0; i < n; i++) {
            ave += a[i];
        }
        if(ave % n) return false;
        ave /= n;
    
        for(int i = 0; i < n; i++) {
            if(abs(a[i] - ave) > 2) {
                return false;
            }
        }
    
        bool flag = false;
    
        for(int op = -1; op <= 1; op++) {
            for(int i = 0; i < n; i++) {
                a[i] = tmp[i];
                G[i].clear();
                deg[i] = 0;
            }
            if(dfs(0, op)) {
                flag = true;
                break;
            }
        }
        return flag;
    }
    
    int main() {
        int T; scanf("%d", &T);
        while(T--) {
            scanf("%d", &n);
            ret.clear();
            for(int i = 0; i < n; i++) {
                deg[i] = 0;
                G[i].clear();
                scanf("%d", &a[i]);
                tmp[i] = a[i];
            }
    
            if(!solve()) {
                puts("NO");
                continue;
            }
    
            queue<int> que;
            for(int i = 0; i < n; i++) {
                if(!deg[i]) {
                    que.push(i);
                }
            }
    
            for(int i = 0; i < n; i++) b[i] = tmp[i];
    
            while(!que.empty()) {
                int u = que.front();
                que.pop();
                for(auto &v : G[u]) {
                    deg[v]--;
                    ret.push_back(mk(u, v));
                    b[u]--;
                    b[v]++;
                    if(!deg[v]) {
                        que.push(v);
                    }
                }
            }
    
            puts("YES");
            printf("%d
    ", SZ(ret));
            for(auto &t : ret) {
                printf("%d %d
    ", t.fi + 1, t.se + 1);
            }
        }
        return 0;
    }
    
    /*
    
    */
  • 相关阅读:
    树莓派 配置 OMV 搭建 NAS(六) 多用户多权限共享文件夹
    树莓派 配置 OMV 搭建 NAS(五) 设置共享权限
    Windows10 切换用户访问共享
    唯一析因环
    实分析p78 两个解释
    群表示论置换矩阵
    欧几里得环
    立体角-高斯定理札记
    环同态p64推论
    泛函p121可分Hilbert空间都同构于l^2
  • 原文地址:https://www.cnblogs.com/CJLHY/p/11200660.html
Copyright © 2020-2023  润新知