• Codeforces 1083C Max Mex 线段树 (看题解)


    Max Mex

    感觉好脑洞的一道题啊。

    用0 - n - 1的值建线段树, 每个区间维护 l - r 能否在一条路径上, 保存两个端点。

    感觉我的第一思路是二分答案, 然后判断那些点是否在一条路径上, 没想到这两条路径也能合并, 这样就能用线段树维护了。

    合并两条路径枚举合并之后的两端点, 暴力判。

    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 2e5 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;}
    
    const int LOG = 18;
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    
    int n, q, p[N], d[N], a[N];
    int in[N], ot[N], idx;
    
    vector<int> G[N];
    int pa[N][LOG], depth[N];
    
    void dfs(int u, int fa) {
        depth[u] = depth[fa] + 1;
        pa[u][0] = fa;
        in[u] = ++idx;
        for(int i = 1; i < LOG; i++) {
            pa[u][i] = pa[pa[u][i - 1]][i - 1];
        }
        for(auto &v : G[u]) {
            dfs(v, u);
        }
        ot[u] = idx;
    }
    
    int getLca(int u, int v) {
        if(depth[u] < depth[v]) swap(u, v);
        int dis = depth[u] - depth[v];
        for(int i = LOG - 1; i >= 0; i--) {
            if(dis >> i & 1) {
                u = pa[u][i];
            }
        }
        if(u == v) return u;
        for(int i = LOG - 1; i >= 0; i--) {
            if(pa[u][i] != pa[v][i]) {
                u = pa[u][i];
                v = pa[v][i];
            }
        }
        return pa[u][0];
    }
    
    inline bool isAnc(int u, int v) {
        return in[u] <= in[v] && ot[v] <= ot[u];
    }
    
    inline bool onPath(int w, int u, int v) {
        int lca = getLca(u, v);
        if(isAnc(w, u) && isAnc(lca, w)) return true;
        if(isAnc(w, v) && isAnc(lca, w)) return true;
        return false;
    }
    
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    struct info {
        int u, v;
    };
    
    int id[4];
    
    info operator + (info A, info B) {
        if(A.u == -1 || B.u == -1) return info{-1, -1};
        if(A.u == 0) return B;
        if(B.u == 0) return A;
        id[0] = A.u; id[1] = A.v;
        id[2] = B.u; id[3] = B.v;
        for(int i = 0; i < 4; i++) {
            for(int j = i + 1; j < 4; j++) {
                bool can = true;
                for(int k = 0; k < 4; k++) {
                    if(k != i && k != j) {
                        if(!onPath(id[k], id[i], id[j])) {
                            can = false;
                            break;
                        }
                    }
                }
                if(can) {
                    return info{id[i], id[j]};
                }
            }
        }
        return info{-1, -1};
    }
    
    struct SegmentTree {
        info a[N << 2];
        void build(int l, int r, int rt) {
            if(l == r) {
                a[rt].u = ::a[l];
                a[rt].v = ::a[l];
                return;
            }
            int mid = l + r >> 1;
            build(lson); build(rson);
            a[rt] = a[rt << 1] + a[rt << 1 | 1];
        }
        void update(int p, int v, int l, int r, int rt) {
            if(l == r) {
                a[rt].u = v;
                a[rt].v = v;
                return;
            }
            int mid = l + r >> 1;
            if(p <= mid) update(p, v, lson);
            else update(p, v, rson);
            a[rt] = a[rt << 1] + a[rt << 1 | 1];
        }
        void query(info &ret, int &ans, int l, int r, int rt) {
            if(l == r) return;
            int mid = l + r >> 1;
            info tmp = ret + a[rt << 1];
            if(tmp.u != -1) {
                ret = tmp;
                ans += mid - l + 1;
                query(ret, ans, rson);
            }
            else {
                query(ret, ans, lson);
            }
        }
    } Tree;
    
    int main() {
        scanf("%d", &n);
        for(int i = 1; i <= n; i++) {
            scanf("%d", &p[i]);
            p[i]++;
            a[p[i]] = i;
        }
        for(int i = 2; i <= n; i++) {
            scanf("%d", &d[i]);
            G[d[i]].push_back(i);
        }
    
        dfs(1, 0);
        Tree.build(1, n , 1);
    
        scanf("%d", &q);
        while(q--) {
            int t;
            scanf("%d", &t);
            if(t == 1) {
                int x, y;
                scanf("%d%d", &x, &y);
                swap(p[x], p[y]);
                a[p[x]] = x;
                a[p[y]] = y;
                Tree.update(p[x], x, 1, n, 1);
                Tree.update(p[y], y, 1, n, 1);
            }
            else {
                if(Tree.a[1].u != -1) {
                    printf("%d
    ", n);
                }
                else {
                    info ret = info{0, 0};
                    int ans = 0;
                    Tree.query(ret, ans, 1, n, 1);
                    printf("%d
    ", ans);
                }
            }
        }
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    【XSY2166】Hope 分治 FFT
    【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂
    【BZOJ1578】【USACO2009Feb】股票市场 背包DP
    【BZOJ2333】【SCOI2011】棘手的操作 treap合并
    【BZOJ1580】【USACO2009Hol】杀手游戏 计算几何
    【BZOJ3379】【USACO2004】交作业 区间DP
    【BZOJ2208】【JSOI2010】连通数 传递闭包
    【BZOJ4033】【HAOI2015】树上染色 树形DP
    【BZOJ3816】【清华集训2014】矩阵变换 稳定婚姻问题
    【XSY2528】道路建设 LCT 可持久化线段树
  • 原文地址:https://www.cnblogs.com/CJLHY/p/11169228.html
Copyright © 2020-2023  润新知