设 (sum=1+2+3+4+dots+n=dfrac{n(n+1)}{2})。
- 如果 (2 mid sum),则显然没有方案。
- 如果 (2mid sum),则这两个集合的和必为 (dfrac{sum}{2})。
将 (dfrac{sum}{2}) 作为容量跑 0-1 背包即可。
Code:
#include<iostream>
using namespace std;
const int N=45,SUM=785;
typedef long long ll; //必须开 long long/dk
ll dp[SUM],n,sum;
int main()
{
cin>>n;
sum=(1+n)*n/2; //计算 sum
if (sum&1){cout<<0;return 0;} //特判
sum/=2; dp[0]=1; //初始化
for (int i=1;i<=n;i++)
for (int j=sum;j>=0;j--)
if (j>=i) dp[j]+=dp[j-i]; //i 为重量,价值为 0,算方案数要将 max 换成 sum。
cout<<dp[sum]/2; //输出要 /2
return 0;
}