• Codeforces Round #439 (Div. 2)


    qls Round 搞搞搞, 搞起来

    A. The Artful Expedient
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Rock... Paper!

    After Karen have found the deterministic winning (losing?) strategy for rock-paper-scissors, her brother, Koyomi, comes up with a new game as a substitute. The game works as follows.

    A positive integer n is decided first. Both Koyomi and Karen independently choose n distinct positive integers, denoted by x1, x2, ..., xnand y1, y2, ..., yn respectively. They reveal their sequences, and repeat until all of 2n integers become distinct, which is the only final state to be kept and considered.

    Then they count the number of ordered pairs (i, j) (1 ≤ i, j ≤ n) such that the value xi xor yj equals to one of the 2n integers. Here xor means the bitwise exclusive or operation on two integers, and is denoted by operators ^ and/or xor in most programming languages.

    Karen claims a win if the number of such pairs is even, and Koyomi does otherwise. And you're here to help determine the winner of their latest game.

    Input

    The first line of input contains a positive integer n (1 ≤ n ≤ 2 000) — the length of both sequences.

    The second line contains n space-separated integers x1, x2, ..., xn (1 ≤ xi ≤ 2·106) — the integers finally chosen by Koyomi.

    The third line contains n space-separated integers y1, y2, ..., yn (1 ≤ yi ≤ 2·106) — the integers finally chosen by Karen.

    Input guarantees that the given 2n integers are pairwise distinct, that is, no pair (i, j) (1 ≤ i, j ≤ n) exists such that one of the following holds: xi = yji ≠ j and xi = xji ≠ j and yi = yj.

    Output

    Output one line — the name of the winner, that is, "Koyomi" or "Karen" (without quotes). Please be aware of the capitalization.

    Examples
    input
    3
    1 2 3
    4 5 6
    output
    Karen
    input
    5
    2 4 6 8 10
    9 7 5 3 1
    output
    Karen
    Note

    In the first example, there are 6 pairs satisfying the constraint: (1, 1), (1, 2), (2, 1), (2, 3), (3, 2) and (3, 3). Thus, Karen wins since 6is an even number.

    In the second example, there are 16 such pairs, and Karen wins again.

     因为异或值可以很大啊,所以数组还是开大点比较好

    #include <bits/stdc++.h>
    using namespace std;
    const int N=3e6;
    int a[2005],b[2005],t[N];
    int main()
    {
        int n;
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        scanf("%d",&a[i]),t[a[i]]=1;
        for(int i=0;i<n;i++)
        scanf("%d",&b[i]),t[b[i]]=1;
        int ans=0;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(t[a[i]^b[j]])
                {
                    ans++;
                }
            }
        }
        if(ans&1)printf("Koyomi
    ");
        else printf("Karen
    ");
        return 0;
    }
    B. The Eternal Immortality
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Even if the world is full of counterfeits, I still regard it as wonderful.

    Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this.

    The phoenix has a rather long lifespan, and reincarnates itself once every a! years. Here a! denotes the factorial of integer a, that is, a! = 1 × 2 × ... × a. Specifically, 0! = 1.

    Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of b! years, that is, . Note that when b ≥ a this value is always integer.

    As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.

    Input

    The first and only line of input contains two space-separated integers a and b (0 ≤ a ≤ b ≤ 1018).

    Output

    Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.

    Examples
    input
    2 4
    output
    2
    input
    0 10
    output
    0
    input
    107 109
    output
    2
    Note

    In the first example, the last digit of  is 2;

    In the second example, the last digit of  is 0;

    In the third example, the last digit of  is 2.

    求两个数的阶乘相除的末位,这个呢,其实只要大于一个数就一定是0了,20肯定行,其他的暴力球下就可以的

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    int main()
    {
        LL a,b;
        cin>>a>>b;
        if(b-a>20)
        cout<<0;else
        {
            int ans = 1;
            for(LL i=a+1; i<=b; i++)
            {
                ans=ans*(i%10)%10;
            }
            cout<<ans;
        }
        return 0;
    }
    C. The Intriguing Obsession
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    — This is not playing but duty as allies of justice, Nii-chan!

    — Not allies but justice itself, Onii-chan!

    With hands joined, go everywhere at a speed faster than our thoughts! This time, the Fire Sisters — Karen and Tsukihi — is heading for somewhere they've never reached — water-surrounded islands!

    There are three clusters of islands, conveniently coloured red, blue and purple. The clusters consist of ab and c distinct islands respectively.

    Bridges have been built between some (possibly all or none) of the islands. A bridge bidirectionally connects two different islands and has length 1. For any two islands of the same colour, either they shouldn't be reached from each other through bridges, or the shortest distance between them is at least 3, apparently in order to prevent oddities from spreading quickly inside a cluster.

    The Fire Sisters are ready for the unknown, but they'd also like to test your courage. And you're here to figure out the number of different ways to build all bridges under the constraints, and give the answer modulo 998 244 353. Two ways are considered different if a pair of islands exist, such that there's a bridge between them in one of them, but not in the other.

    Input

    The first and only line of input contains three space-separated integers ab and c (1 ≤ a, b, c ≤ 5 000) — the number of islands in the red, blue and purple clusters, respectively.

    Output

    Output one line containing an integer — the number of different ways to build bridges, modulo 998 244 353.

    Examples
    input
    1 1 1
    output
    8
    input
    1 2 2
    output
    63
    input
    1 3 5
    output
    3264
    input
    6 2 9
    output
    813023575
    Note

    In the first example, there are 3 bridges that can possibly be built, and no setup of bridges violates the restrictions. Thus the answer is 23 = 8.

    In the second example, the upper two structures in the figure below are instances of valid ones, while the lower two are invalid due to the blue and purple clusters, respectively.

  • 相关阅读:
    Dungeon Master (BFS与DFS的应用)
    Broken Keyboard(模拟数组或者双重链表的运用)
    自己设置的纸牌游戏(简单数组栈和队列的设计)
    贪吃蛇(双重优先队列的综合运用)
    N!的阶乘附带简单大整数类的输入输出(暂时没有深入的了解)
    大整数乘法(Comba 乘法 (Comba  Multiplication)原理)
    建筑抢修(堆优先队列和贪心的结合)
    lower_bound()函数与quicksort()函数的简单掌握
    Long Jumps(二分查找lower_bound()函数的运用)
    团队队列(列和map结合的经典运用)
  • 原文地址:https://www.cnblogs.com/BobHuang/p/7634055.html
Copyright © 2020-2023  润新知