• TCP/IP协议学习


    计算机网路学得不好,首先先放个OSI七层网络模型吧

    在协议的控制下,上层对下层进行调用,下层对上层进行服务, 上下层间用交换原语交换信息。这样可以提高传输速率,并且保证数据安全,所以说其实每一层都有存在的必要

    但是现在互联网上大家都有TCP/IP协议,可以说是某种黑话,他封装了前三层

    每一层也有不同的协议

    在网络通信的过程中,将发出数据的主机称为源主机,接收数据的主机称为目的主机。当源主机发出数据时,数据在源主机中从上层向下层传送。源主机中的应用进程先将数据交给应用层,应用层加上必要的控制信息就成了报文流,向下传给传输层。传输层将收到的数据单元加上本层的控制信息,形成报文段、数据报,再交给网际层。网际层加上本层的控制信息,形成IP数据报,传给网络接口层。网络接口层将网际层交下来的IP数据报组装成帧,并以比特流的形式传给网络硬件(即物理层),数据就离开源主机。
    通过网络传输,数据到达目的主机后,按照与源主机相反的过程,在目的主机中从下层向上层进行拆包传送。首先由网络接口层接收数据,依次剥离原来加上的控制信息,最后将源主机中的应用进程发送的数据交给目的主机的应用进程。
    TCP/IP协议的基本传输单位是数据报(Datagram),TCP协议负责把数据分成若干个数据报,并给每个数据报加上报头,报头上有编号,以保证目的主机能将数据还原为原来的格式。IP协议在每个报头上再加上接收端主机IP地址,这样数据能找到自己要去的地方。如果传输过程中出现数据失真、数据丢失等情况,TCP协议会自动请求重新传输数据,并重组数据报。可以说,IP协议保证数据的传输,TCP协议保证数据传输的质量。
    TCP/IP协议数据在传输时每通过一层就要在数据上加个报头,其中的数据供接收端同一层协议使用,而在接收端,每经过一层要把用过的报头去掉,这样可以保证传输数据的一致性。
     
    UDP 包的大小就应该是 1500 - IP头(20) - UDP头(8) = 1472(Bytes)
    TCP 包的大小就应该是 1500 - IP头(20) - TCP头(20) = 1460 (Bytes)

    标志位字段(U、A、P、R、S、F):占6比特。各比特的含义如下:  

    URG:紧急指针(urgent pointer)有效。

    ACK:确认序号有效。

    PSH:接收方应该尽快将这个报文段交给应用层。

    RST:重建连接。

    SYN:发起一个连接。

    FIN:释放一个连接。

    窗口大小字段:占16比特。此字段用来进行流量控制。单位为字节数,这个值是本机期望一次接收的字节数。

    TCP校验和字段:占16比特。对整个TCP报文段,即TCP头部和TCP数据进行校验和计算,并由目标端进行验证。

    紧急指针字段:占16比特。它是一个偏移量,和序号字段中的值相加表示紧急数据最后一个字节的序号。

    选项字段:占32比特。可能包括"窗口扩大因子"、"时间戳"等选项。

     
     
     
    在用UDP局域网通信时,经常发生“Hello World”来进行测试,但是“Hello World”并不满足最小有效数据(64-46)的要求,为什么小于18个字节,对方仍然可用收到呢?因为在链路层的MAC子层中会进行数据补齐,不足18个字节的用0补齐。但当服务器在公网,客户端在内网,发生小于18个字节的数据,就会出现接收端收不到数据的情况。
     

    用UDP协议发送时,用sendto函数最大能发送数据的长度为:65535- IP头(20) - UDP头(8)=65507字节。用sendto函数发送数据时,如果发送数据长度大于该值,则函数会返回错误。  

    用TCP协议发送时,由于TCP是数据流协议,因此不存在包大小的限制(暂不考虑缓冲区的大小),这是指在用send函数时,数据长度参数不受限制。而实际上,所指定的这段数据并不一定会一次性发送出去,如果这段数据比较长,会被分段发送,如果比较短,可能会等待和下一次数据一起发送。

     
    RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发包括网络分布式多程序在内的应用程序更加容易。
     

    ISN

    三次握手的一个重要功能是客户端和服务端交换ISN(Initial Sequence Number), 以便让对方知道接下来接收数据的时候如何按序列号组装数据。

    如果ISN是固定的,攻击者很容易猜出后续的确认号。

    ISN = M + F(localhost, localport, remotehost, remoteport)

    M是一个计时器,每隔4毫秒加1。 F是一个Hash算法,根据源IP、目的IP、源端口、目的端口生成一个随机数值。要保证hash算法不能被外部轻易推算得出。

    其实3次握手的目的并不只是让通信双方都了解到一个连接正在建立,还在于利用数据包的选项来传输特殊的信息,交换初始序列号ISN。

    3次握手是指发送了3个报文段,4次挥手是指发送了4个报文段。注意,SYN和FIN段都是会利用重传进行可靠传输的。

     

    序列号回绕

    因为ISN是随机的,所以序列号容易就会超过2^31-1. 而tcp对于丢包和乱序等问题的判断都是依赖于序列号大小比较的。此时就出现了所谓的tcp序列号回绕(sequence wraparound)问题。怎么解决?

    /*
    * The next routines deal with comparing 32 bit unsigned ints
    * and worry about wraparound (automatic with unsigned arithmetic).
    */
    static inline int before(__u32 seq1, __u32 seq2)
    {
        return (__s32)(seq1-seq2) < 0;
    }
    
    #define after(seq2, seq1) before(seq1, seq2)

    上述代码是内核中的解决回绕问题代码。s32是有符号整型的意思,而u32则是无符号整型。序列号发生回绕后,序列号变小,相减之后,把结果变成有符号数了,因此结果成了负数。

    假设seq1=255, seq2=1(发生了回绕)。
    seq1 = 1111 1111 seq2 = 0000 0001
    我们希望比较结果是
     seq1 - seq2=
     1111 1111
    -0000 0001
    -----------
     1111 1110
    
    由于我们将结果转化成了有符号数,由于最高位是1,因此结果是一个负数,负数的绝对值为
     0000 0001 + 1 = 0000 0010 = 2
    
    因此seq1 - seq2 < 0

    syn flood攻击

    最基本的DoS攻击就是利用合理的服务请求来占用过多的服务资源,从而使合法用户无法得到服务的响应。syn flood属于Dos攻击的一种。

    如果恶意的向某个服务器端口发送大量的SYN包,则可以使服务器打开大量的半开连接,分配TCB(Transmission Control Block), 从而消耗大量的服务器资源,同时也使得正常的连接请求无法被相应。当开放了一个TCP端口后,该端口就处于Listening状态,不停地监视发到该端口的Syn报文,一 旦接收到Client发来的Syn报文,就需要为该请求分配一个TCB,通常一个TCB至少需要280个字节,在某些操作系统中TCB甚至需要1300个字节,并返回一个SYN ACK命令,立即转为SYN-RECEIVED即半开连接状态。系统会为此耗尽资源。

    常见的防攻击方法有:

    无效连接的监视释放

    监视系统的半开连接和不活动连接,当达到一定阈值时拆除这些连接,从而释放系统资源。这种方法对于所有的连接一视同仁,而且由于SYN Flood造成的半开连接数量很大,正常连接请求也被淹没在其中被这种方式误释放掉,因此这种方法属于入门级的SYN Flood方法。

    延缓TCB分配方法

    消耗服务器资源主要是因为当SYN数据报文一到达,系统立即分配TCB,从而占用了资源。而SYN Flood由于很难建立起正常连接,因此,当正常连接建立起来后再分配TCB则可以有效地减轻服务器资源的消耗。常见的方法是使用Syn Cache和Syn Cookie技术。

    Syn Cache技术

    系统在收到一个SYN报文时,在一个专用HASH表中保存这种半连接信息,直到收到正确的回应ACK报文再分配TCB。这个开销远小于TCB的开销。当然还需要保存序列号。

    Syn Cookie技术

    Syn Cookie技术则完全不使用任何存储资源,这种方法比较巧妙,它使用一种特殊的算法生成Sequence Number,这种算法考虑到了对方的IP、端口、己方IP、端口的固定信息,以及对方无法知道而己方比较固定的一些信息,如MSS(Maximum Segment Size,最大报文段大小,指的是TCP报文的最大数据报长度,其中不包括TCP首部长度。)、时间等,在收到对方 的ACK报文后,重新计算一遍,看其是否与对方回应报文中的(Sequence Number-1)相同,从而决定是否分配TCB资源。

    使用SYN Proxy防火墙

    一种方式是防止墙dqywb连接的有效性后,防火墙才会向内部服务器发起SYN请求。防火墙代服务器发出的SYN ACK包使用的序列号为c, 而真正的服务器回应的序列号为c', 这样,在每个数据报文经过防火墙的时候进行序列号的修改。另一种方式是防火墙确定了连接的安全后,会发出一个safe reset命令,client会进行重新连接,这时出现的syn报文会直接放行。这样不需要修改序列号了。但是,client需要发起两次握手过程,因此建立连接的时间将会延长。

     

    看到有人说,只看到过TCP状态位为 ’FIN +ACK’,但从来没有看过状态位只有 ‘FIN’,你应该怎样给他解释?

    RFC793明确规定,除了第一个握手报文SYN除外,其它所有报文必须将ACK = 1。

     

    滑动窗口功能:确认、差错控制流量控制
  • 相关阅读:
    简单入门Kubernetes
    什么是知识
    Kubernetes的安装
    Netty简单使用
    Hystrix 容错处理
    一文总结之MyBatis
    基于协同过滤算法的电影推荐系统 利用修正的余弦相似度算法做影片推荐。
    linux 常用命令记录
    orcale增量全量实时同步mysql可支持多库使用Kettle实现数据实时增量同步
    ThreadUtil 多线程处理List,回调处理具体的任务
  • 原文地址:https://www.cnblogs.com/BobHuang/p/11198770.html
Copyright © 2020-2023  润新知