• 【题解】$HDU 3092$


    HDU 3092

    题目大意

    将一个数 (s) 写成很多数相加,求这些数的 (lcm) 最大

    (\)


    (\)

    (Solution)

    网上的题解我真是emm???直接复述一遍结论就离谱。这道题重点难道不是在发现这个结论吗?完全背包谁不会啊??忍不住吐槽了kkk

    首先一定要手玩几个例子,比如 (10) 分解为 (5 + 3 + 2)(11) 分解为 (5 + 3 + 2 + 1),发现都是质数

    如果是在考试中,再多打几个表看看是不是这样,然后就可以直接写了,但是是在做题的话还是来理解一下

    一个前置证明,若 (a > 1, b > 1)(a, b) 都为正整数,那么 (a * b = c) ,这个还是比较显然

    假设 (s) 分解为了 (a + b),且 (a, b) 都为非质数,那么有 $$a * b = a_1 * a_2 * ... * a_i * b_1 * b_2 * ... * b_j (a_1, a_2, ..., a_i, b_1, b_2, ..., b_j都为质数)$$

    [& & ]

    [a_1 + a_2 + ... + a_i + b_1 + b_2 + ... + b_j <= a + b ]

    (a + b) 质因数分解后贡献的答案一样,但用的和还少一些,所以拆分成质数的是最佳的

    还有两个要注意的点

    (1.) 质数的次幂也是可以选的。

    为什么呢?还是看上面那个证明,若 (b = c^x)(c) 为一个质数,那么这时候是没有必要拆开 (b) 的,因为拆成一样的之后 (operatorname{lcm}) 就多了一个 (b^y)

    (2.) 由于公倍数可能会很大,所以要取模。

    但是取了模怎么比较大小呢?这时候就要用到 (log) 来帮忙了

    为什么选 (log) ?因为 (log n) 可以把 (n) 变为一个很小的数,且若 (a * b < c * d) ,满足 (log a + log b < log c + log d)

    也就是说,在不改变数字相对大小的情况下,把数字缩小了。(有点儿像用精度换取了空间?不知道有没有人能get到

    具体实现看代码8

    (\)

    完结撒花✿✿ヽ(°▽°)ノ✿

    (感觉这篇题解写得好严肃啊233不是我的风格啊~果然数学到哪都令我头秃呢(雾

    (\)


    (\)

    (Code)

    #include<bits/stdc++.h>
    #define ll long long
    #define F(i, x, y) for(int i = x; i <= y; ++ i)
    using namespace std;
    int read();
    const int N = 2e4 + 5;
    int n, mod, prime[N], vis[N];
    double dp[N];
    ll ans[N], lans;
    void init()
    {
       F(i, 2, N - 1)
       {
          if(! vis[i]) prime[++ prime[0]] = i;
          for(int j = 1; j <= prime[0] && prime[j] * i <= N - 1; ++ j)
             vis[prime[j] * i] = 1;
       }
    }
    int main()
    {
       init();//欧拉筛找质数
       while(scanf("%d%d", &n, &mod) != EOF)
       {
          F(i, 0, n) dp[i] = 0, ans[i] = 1;
          for(int i = 1; i <= prime[0] && prime[i] <= n; ++ i)
             for(int j = n; j >= prime[i]; -- j)
                for(int k = 1, now = prime[i]; now <= j; ++ k, now *= prime[i])//枚举 prime[i] 的 k 次方
                {
                   if(now <= j && dp[j - now] + log(now) > dp[j])
                   dp[j] = dp[j - now] + log(now), ans[j] = ans[j - now] * now % mod;//dp 用来找答案,ans 用来存真的答案
                }
          printf("%lld
    ", ans[n]);
       }
       return 0;
    }
    /*--------------- Bn_ff 2020.7.4 HDU3092 ---------------*/
    int read()
    {
       int x = 0, f = 1;
       char c = getchar();
       while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
       while(c >= '0' && c <= '9') x = x * 10 + c - '0', c =  getchar();
       return x * f;
    }
    
  • 相关阅读:
    Length of Last Word
    Remove Duplicates from Sorted Array II
    Sum Root to Leaf Numbers
    Valid Parentheses
    Set Matrix Zeroes
    Symmetric Tree
    Unique Binary Search Trees
    110Balanced Binary Tree
    Match:Blue Jeans(POJ 3080)
    Match:Seek the Name, Seek the Fame(POJ 2752)
  • 原文地址:https://www.cnblogs.com/Bn_ff/p/13236227.html
Copyright © 2020-2023  润新知