1122 Hamiltonian Cycle (25 分)
The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2
, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V1 V2 ... Vn
where n is the number of vertices in the list, and Vi's are the vertices on a path.
Output Specification:
For each query, print in a line YES
if the path does form a Hamiltonian cycle, or NO
if not.
Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO
题目大意:判断给出的路径是否是哈密顿回路,哈密顿回路是一个简单回路,包含图中的每一个点,
我的AC:
#include <iostream> #include <vector> #include<cstdio> #include <map> using namespace std; #define inf 9999 int g[205][205]; int vis[205]; int main() { int n,m,f,t; cin>>n>>m; fill(g[0],g[0]+205*205,inf); for(int i=0;i<m;i++){ cin>>f>>t; g[f][t]=1; g[t][f]=1; } int k,ct; cin>>k; while(k--){ fill(vis,vis+205,0); cin>>ct; vector<int> path(ct); for(int i=0;i<ct;i++){ cin>>path[i]; } if(path[0]!=path[ct-1]){//首先需要保证两者是相同的。 cout<<"NO ";continue; } bool flag=false; for(int i=0;i<ct-1;i++){ if(g[path[i]][path[i+1]]==inf){//如果两点之间,没有路径。 cout<<"NO "; flag=true; break; } if(vis[path[i+1]]==1){//如果重复访问那么就不是简单路径, cout<<"NO "; flag=true;break; } vis[path[i+1]]=1; // cout<<path[i+1]<<' '; } if(!flag){//这里还需要判断是否是所有的点都已经访问过。 bool fg=false; for(int i=1;i<=n;i++){//这里是从1开始判断啊喂!!! if(vis[i]==0){ cout<<"NO "; fg=true;break; } } if(!fg)cout<<"YES "; } } return 0; }
//本来很简单的一道题,两个周没打算法代码了,生疏了。
1.点标号是从1开始的所以 最后判断所有的点是否被遍历过,是从1开始循环的,
2.比较简单,就是几个判断情况,使用邻接矩阵存储图,不是邻接表。