• 51nod1222 最小公倍数计数


    求$sum_{i=1}^{n}sum_{j=1}^{n}[[i,jleq n]$。n<1e11。

    方法零:变不等为相等,直接反演,求其前缀和

    $sum_{i=1}^{n}sum_{j=1}^{n}[[i,j]=n]$

    闪一句:反演!!!

    $=sum_{d|n}mu(d)sum_{i=1}^nsum_{j=1}^i[[i,j]|frac{n}{d}]$

    闪一句:$sum_{i=1}^nsum_{j=1}^i[[i,j]|frac{n}{d}]=sum_{i=1}^{n}sum_{j=1}^{i}[i|frac{n}{d}wedge j|frac{n}{d}]=frac{(d(frac{n}{d})+1)(d(frac{n}{d}))}{2}$

    $=sum_{d|n}mu(d)frac{(d(frac{n}{d})+1)(d(frac{n}{d}))}{2}$

    $=frac{1}{2}(sum_{d|n}mu(d)d^2(frac{n}{d})+sum_{d|n}mu(d)d(frac{n}{d}))$

    分别求括号里两坨东西的前缀和。

    $sum_{i=1}^{n}sum_{d|i}mu(d)d(frac{i}{d})$

    $=sum_{d=1}^nmu(d)sum_{k=1}^{left lfloor frac{n}{d} ight floor}d(k)$

    $=sum_{d=1}^nmu(d)sum_{k=1}^{left lfloor frac{n}{d} ight floor}left lfloor frac{n}{kd} ight floor$

    $sum_{i=1}^{n}sum_{d|i}mu(d)d^2(frac{i}{d})$

    $=sum_{d=1}^{n}mu(d)sum_{k=1}^{left lfloor frac{n}{d} ight floor}d^2(k)$

    $mu$的前缀和用杜教筛。整除函数的前缀和可用类似杜教筛的方法。约数个数的平方的前缀和可用洲阁筛,似乎最后可$sqrt{n}$时间对每个$frac{n}{i}$的取值的对应前缀和求出,我不太会就用了$n^{frac{2}{3}}$的方法。

    结果?妥妥的卡空间,空间开小卡时间。

      1 //#include<iostream>
      2 #include<cstring>
      3 #include<cstdlib>
      4 #include<cstdio>
      5 //#include<map>
      6 #include<math.h>
      7 //#include<time.h>
      8 //#include<complex>
      9 #include<algorithm>
     10 using namespace std;
     11 
     12 #define LL long long
     13 LL n,a,b;
     14 
     15 LL md=3000000,mz=320000;  
     16 #define maxa 3000011
     17 short miu[maxa],summiu[maxa],d[maxa],ci[maxa];unsigned int sumd2[maxa];int mi[maxa],sumd[maxa],prime[maxa/10],lp,lw; bool notprime[maxa];
     18 #define maxb 640011
     19 LL g[maxb],ff[maxb],who[maxb],i0[maxb],sp[maxb];
     20 void pre()
     21 {
     22     miu[1]=summiu[1]=sumd[1]=sumd2[1]=d[1]=1; lp=0;
     23     for (int i=2;i<=md;i++)
     24     {
     25         if (!notprime[i]) {prime[++lp]=i; miu[i]=-1; d[i]=2; mi[i]=i; ci[i]=1;}
     26         summiu[i]=summiu[i-1]+miu[i];
     27         sumd[i]=sumd[i-1]+d[i];
     28         sumd2[i]=sumd2[i-1]+d[i]*d[i];
     29         for (int j=1,tmp;j<=lp && 1ll*i*prime[j]<=md;j++)
     30         {
     31             notprime[tmp=i*prime[j]]=1;
     32             if (i%prime[j]) {miu[tmp]=-miu[i]; d[tmp]=d[i]*2; mi[tmp]=prime[j]; ci[tmp]=1;}
     33             else {miu[tmp]=0; d[tmp]=d[i/mi[i]]*(ci[i]+2); mi[tmp]=mi[i]*prime[j]; ci[tmp]=ci[i]+1; break;}
     34         }
     35     }
     36     int tmp=0;
     37     for (int i=2;i<=mz;i++) {sp[i]=sp[i-1]+!notprime[i]; if (!notprime[i]) tmp++;}
     38     lp=tmp-1; mz=prime[tmp]-1;
     39 }
     40 
     41 #define maxh 1000007
     42 struct Hash
     43 {
     44     int first[maxh],le; struct Edge{LL to,v; int next;}edge[maxb];
     45     void clear(LL n) {le=2; for (LL i=1;i<=n;i=n/(n/i)+1) first[n/i%maxh]=0;}
     46     void insert(LL x,LL y) {int z=x%maxh; Edge &e=edge[le]; e.to=x; e.v=y; e.next=first[z]; first[z]=le++;}
     47     LL find(LL x) {int z=x%maxh; for (int i=first[z];i;i=edge[i].next) if (edge[i].to==x) return edge[i].v; return -1;}
     48 }hm,hz;
     49 
     50 LL dumiu(LL n)
     51 {
     52     if (n<=md) return summiu[n];
     53     LL tmp=hm.find(n); if (tmp!=-1) return tmp;
     54     LL ans=1;
     55     for (LL i=2,last;i<=n;i=last+1)
     56     {
     57         last=n/(n/i);
     58         ans-=dumiu(n/i)*(last-i+1);
     59     }
     60     hm.insert(n,ans); return ans;
     61 }
     62 
     63 LL dud(LL n)
     64 {
     65     if (n<=md) return sumd[n];
     66     LL ans=0;
     67     for (LL i=1,last;i<=n;i=last+1)
     68     {
     69         last=n/(n/i);
     70         ans+=(last-i+1)*(n/i);
     71     }
     72     return ans;
     73 }
     74 
     75 void mg(LL n)
     76 {
     77     lw=0; hz.clear(n); for (LL i=1;i<=n;i=n/(n/i)+1) lw++,who[lw]=g[lw]=n/i,hz.insert(who[lw],lw);
     78     memset(i0,0,sizeof(i0));
     79     for (int i=1;i<=lp;i++)
     80         for (int j=1;j<=lw && (LL)prime[i]*prime[i]<=who[j];j++)
     81         {
     82             int k=hz.find(who[j]/prime[i]);
     83             g[j]-=g[k]-(i-1-i0[k]);
     84             i0[j]=i;
     85         }
     86 }
     87 
     88 void mff(LL n)
     89 {
     90     for (int i=lp;i;i--)
     91         for (int j=1;j<=lw && (LL)prime[i]*prime[i]<=who[j];j++)
     92         {
     93             if (prime[i+1]>who[j]) ff[j]=1;
     94             else if ((LL)prime[i+1]*prime[i+1]>who[j]) ff[j]=(sp[min(mz,who[j])]-sp[prime[i+1]-1])*4+1;
     95             LL tmp=prime[i],k2;
     96             for (int c=1;tmp<=who[j];tmp*=prime[i],c++)
     97             {
     98                 LL now=who[j]/tmp;
     99                 if (prime[i+1]>now) k2=1;
    100                 else if (prime[i+1]*(LL)prime[i+1]>now) k2=(sp[min(mz,now)]-sp[prime[i+1]-1])*4+1;
    101                 else k2=ff[hz.find(now)];
    102                 ff[j]+=k2*(c+1)*(c+1);
    103             }
    104         }
    105 }
    106 
    107 LL list[maxb];
    108 void zh(LL n)
    109 {
    110     for (int i=1;i<=lw;i++)
    111     {
    112         if ((LL)4>who[i]) list[i]=1;
    113         else list[i]=ff[i];
    114         if (who[i]>md) for (int j=1,last;j<=mz;j=last+1)
    115         {
    116             LL tmp=who[i]/j; last=min(mz,who[i]/tmp);
    117             if (prime[lp+1]>tmp) continue;
    118             int id=hz.find(tmp);
    119             list[i]+=(sumd2[last]-sumd2[j-1])*(g[id]-1-(lp-i0[id]))*4;
    120         }
    121         else list[i]=sumd2[who[i]];
    122     }
    123 }
    124 
    125 LL calc(LL n)
    126 {
    127     mg(n); mff(n); zh(n);
    128     LL ans=0;
    129     hm.clear(n);
    130     for (LL i=1,last;i<=n;i=last+1)
    131     {
    132         last=n/(n/i);
    133         ans+=(dumiu(last)-dumiu(i-1))*dud(n/i);
    134     }
    135     for (LL i=1,last;i<=n;i=last+1)
    136     {
    137         last=n/(n/i);
    138         ans+=(dumiu(last)-dumiu(i-1))*list[hz.find(n/i)];
    139     }
    140     return ans>>1;
    141 }
    142 
    143 int main()
    144 {
    145     scanf("%lld%lld",&a,&b);
    146     pre();
    147     LL ans=-calc(a-1); ans+=calc(b);
    148     printf("%lld
    ",ans);
    149     return 0;
    150 }
    View Code

    方法零点五:还是求前缀和,换个方法。

    $sum_{i=1}^{n}sum_{j=1}^{i}[[i,j]=n]$

    $=sum_{d=1}^{n}sum_{i=1}^{n}sum_{j=1}^{i}[frac{ij}{d}=n][(i,j)=d]$

    $=sum_{d=1}^nsum_{i=1}^{frac{n}{d}}sum_{j=1}^i[ijd=n][(i,j)=1]$

    闪一句:$d|n$是$[ijd=n]$的必要条件。

    $=sum_{d|n}sum_{i=1}^{frac{n}{d}}sum_{j=1}^i[ij=frac{n}{d}][(i,j)=1]$

    在这里停住!

    第一个$sum$后面,与一个积性函数有关!!

    把后面那坨东西记作$q(frac{n}{d})$,设数$x$有$p(x)$个不同质因子,可得$q(x)=2^{p(x)-1}$。

    而$(x,y)=1 -> p(xy)=p(x)+p(y)$,因此$2^{p(xy)}=2^{p(x)}*2^{p(y)}$,$q$的两倍是一个积性函数,可以洲阁筛筛其前缀和。

    最后

    $sum_{i=1}^{n}sum_{d|i}q(d)$

    $=sum_{d=1}^nq(d)left lfloor  frac{n}{d} ight floor$

    好的,洲阁筛在$frac{n^{frac{3}{4}}}{ln(n)}+n^{frac{2}{3}}$时间内处理每个$frac{n}{i}$的$q$的前缀和,最后记得$+1$,$div 2$。

      1 //#include<iostream>
      2 #include<cstring>
      3 #include<cstdlib>
      4 #include<cstdio>
      5 //#include<map>
      6 #include<math.h>
      7 #include<time.h>
      8 //#include<complex>
      9 #include<algorithm>
     10 using namespace std;
     11 
     12 #define LL long long
     13 LL a,b,n,mz=320000,md=8000000;
     14 #define maxm 8000011
     15 LL sump[maxm]; short pp[maxm]; int prime[maxm/10],lp; bool notprime[maxm];
     16 #define maxn 640011
     17 LL who[maxn],ff[maxn],g[maxn],sp[maxn];int i0[maxn],lw;
     18 
     19 void pre()
     20 {
     21     pp[1]=0; lp=0; sump[1]=1;
     22     for (int i=2;i<=md;i++)
     23     {
     24         if (!notprime[i]) {prime[++lp]=i; pp[i]=1;}
     25         sump[i]=sump[i-1]+(1<<pp[i]);
     26         for (int j=1,tmp;j<=lp && (LL)prime[j]*i<=md;j++)
     27         {
     28             notprime[tmp=i*prime[j]]=1;
     29             if (i%prime[j]) {pp[tmp]=pp[i]+1;}
     30             else {pp[tmp]=pp[i]; break;}
     31         }
     32     }
     33     for (int i=2;i<=mz;i++) sp[i]=sp[i-1]+!notprime[i];
     34     lp=0; for (int i=2;i<=mz;i++) if (!notprime[i]) lp++;
     35     mz=prime[lp]-1; lp--;
     36 }
     37 
     38 #define maxh 1000007
     39 struct Hash
     40 {
     41     int first[maxh],le;struct Edge{LL to; int v,next;}edge[maxn];
     42     void clear(LL n) {le=2; for (LL i=1;i<=n;i=n/(n/i)+1) first[n/i%maxh]=0;}
     43     void insert(LL x,int y) {int h=x%maxh; Edge &e=edge[le]; e.to=x; e.v=y; e.next=first[h]; first[h]=le++;}
     44     int find(LL x) {int h=x%maxh; for (int i=first[h];i;i=edge[i].next) if (edge[i].to==x) return edge[i].v; return -1;}
     45 }h;
     46 
     47 void mg()
     48 {
     49     lw=0; h.clear(n);
     50     for (LL i=1;i<=n;i=n/(n/i)+1) lw++,who[lw]=g[lw]=n/i,h.insert(who[lw],lw);
     51     memset(i0,0,sizeof(i0));
     52     for (int i=1;i<=lp;i++)
     53         for (int j=1;j<=lw && (LL)prime[i]*prime[i]<=who[j];j++)
     54         {
     55             int k=h.find(who[j]/prime[i]);
     56             g[j]-=g[k]-(i-1-i0[k]);
     57             i0[j]=i;
     58         }
     59 }
     60 
     61 int cnt=0;
     62 void mff()
     63 {
     64     for (int i=lp;i;i--)
     65         for (int j=1;j<=lw && (LL)prime[i]*prime[i]<=who[j];j++)
     66         {
     67             if (prime[i+1]>who[j]) ff[j]=1;
     68             else if ((LL)prime[i+1]*prime[i+1]>who[j]) ff[j]=(sp[min(mz,who[j])]-sp[prime[i+1]-1])*2+1;
     69             LL tmp=prime[i],k2=0;
     70             cnt++;
     71             for (int c=1;tmp<=who[j];tmp*=prime[i],c++)
     72             {
     73                 LL t=who[j]/tmp;
     74                 if (prime[i+1]>t) k2+=1;
     75                 else if ((LL)prime[i+1]*prime[i+1]>t) k2+=(sp[min(mz,t)]-sp[prime[i+1]-1])*2+1;
     76                 else k2+=ff[h.find(t)];
     77             }
     78             ff[j]+=k2*2;
     79         }
     80 }
     81 
     82 LL list[maxn];
     83 void zh()
     84 {
     85     for (int i=1;i<=lw;i++)
     86     {
     87         if (4>who[i]) list[i]=1;
     88         else list[i]=ff[i];
     89         if (who[i]<=md) list[i]=sump[who[i]];
     90         else for (int j=1,last;j<=mz;j=last+1)
     91         {
     92             LL now=who[i]/j; last=min(mz,who[i]/now);
     93             if (prime[lp+1]>now) continue;
     94             int id=h.find(now);
     95             list[i]+=(sump[last]-sump[j-1])*(g[id]-1-(lp-i0[id]))*2;
     96         }
     97         list[i]=(list[i]+1)>>1;
     98     }
     99     list[lw+1]=0;
    100 }
    101 
    102 LL calc(LL nn)
    103 {
    104     n=nn; mg(); mff(); zh();
    105     LL ans=0;
    106     for (int i=1;i<=lw;i++) ans+=(n/who[i])*(list[i]-list[i+1]);
    107     return ans;
    108 }
    109 
    110 int main()
    111 {
    112     scanf("%lld%lld",&a,&b); pre();
    113     printf("%lld
    ",calc(b)-calc(a-1));
    114     return 0;
    115 }
    View Code

     

    很好。

    方法三:没关系我们东山再起。前面是把$leq n$变$=n$然后算前缀和,这次直接算$leq n$。为了方便,把$x leq y$的限制删去,答案+b-a+1后/2。

    $sum_{i=1}^{n}sum_{j=1}^{n}[[i,j]leq n]$

    $=sum_{d=1}^{n}sum_{i=1}^{n}sum_{j=1}^{n}[frac{ij}{d}leq n][(i,j)=d]$

    $=sum_{d=1}^{n}sum_{i=1}^{left lfloor frac{n}{d} ight floor}sum_{j=1}^{left lfloor frac{n}{d} ight floor}[ijd leq n][(i,j)=1]$

    $=sum_{d=1}^{n}sum_{i=1}^{left lfloor frac{n}{d} ight floor}sum_{j=1}^{left lfloor frac{n}{d} ight floor}[ijd leq n]sum_{t|iwedge t|j}mu(t)$

    $=sum_{t=1}^{n}mu(t)sum_{d=1}^{n}sum_{i=1}^{left lfloor frac{n}{dt^2} ight floor}sum_{j=1}^{left lfloor frac{n}{dt^2} ight floor}[ijd leq left lfloor frac{n}{t^2} ight floor]$

    $=sum_{t=1}^{sqrt{n}}mu(t)sum_{d=1}^{left lfloor frac{n}{t^2} ight floor}sum_{i=1}^{frac{n}{dt^2}}sum_{j=1}^{frac{n}{dt^2}}[ijd leq left lfloor frac{n}{t^2} ight floor]$

    嗯问题在右边那三个$sum$。就是形如$abc leq n$的东西。

    令$a<b<c$,则$a$只要枚举到$n^{frac{1}{3}}$,b枚举到$sqrt{frac{n}{a}}$,c直接得范围。

    然后算三个不等、两个相等、三个相等的,乘对应组合数。

    复杂度O(能过)

     1 //#include<iostream>
     2 #include<cstring>
     3 #include<cstdlib>
     4 #include<cstdio>
     5 //#include<map>
     6 #include<math.h>
     7 #include<time.h>
     8 //#include<complex>
     9 #include<algorithm>
    10 using namespace std;
    11 
    12 #define LL long long
    13 LL a,b,m=320000;
    14 #define maxn 640011
    15 short miu[maxn],summiu[maxn]; int prime[maxn],lp; bool notprime[maxn];
    16 void pre()
    17 {
    18     miu[1]=summiu[1]=1;
    19     for (int i=2;i<=m;i++)
    20     {
    21         if (!notprime[i]) {prime[++lp]=i; miu[i]=-1;}
    22         summiu[i]=summiu[i-1]+miu[i];
    23         for (int j=1,tmp;j<=lp && (LL)prime[j]*i<=m;j++)
    24         {
    25             notprime[tmp=i*prime[j]]=1;
    26             if (i%prime[j]) {miu[tmp]=-miu[i];}
    27             else {miu[tmp]=0; break;}
    28         }
    29     }
    30 }
    31 
    32 LL bbb(LL n)
    33 {
    34     LL A,B,C,D; A=B=C=D=0;
    35     for (LL i=1;i*i*i<=n;i++) for (LL j=i+1,to=n/i;j*j<=to;j++) A+=to/j-j; A*=6;
    36     for (LL i=1;i*i*i<=n;i++) B+=n/i/i-i; B*=3;
    37     for (LL i=1;i*i*i<=n;i++) C+=(LL)(sqrt(n/i)+1e-6)-i; C*=3;
    38     for (LL i=1;i*i*i<=n;i++) D++;
    39     return A+B+C+D;
    40 }
    41 
    42 LL calc(LL n)
    43 {
    44     LL ans=0;
    45     for (LL i=1,last;i*i<=n;i=last+1)
    46     {
    47         for (last=i;n/(i*i)==n/(last*last);last++); last--;
    48         ans+=(summiu[last]-summiu[i-1])*bbb(n/(i*i));
    49     }
    50     return ans;
    51 }
    52 
    53 int main()
    54 {
    55     scanf("%lld%lld",&a,&b); pre();
    56     printf("%lld
    ",(calc(b)-calc(a-1)+b-a+1)>>1);
    57     return 0;
    58 }
    View Code
  • 相关阅读:
    java基础(一)
    html脚本总结
    python编码规范以及推导式的编写
    性能测试
    IOS 单例分析
    IOS 从一个应用跳转另一个应用
    ios开发 如何在应用内获取当前周围wifi列表和强度 并实现在应用内控制wifi开关
    iOS 获取手机的型号,系统版本,软件名称,软件版本
    ios下最简单的正则,RegexKitLite
    网络编程总结(解析数据,下载文件,确认网络环境)
  • 原文地址:https://www.cnblogs.com/Blue233333/p/8495737.html
Copyright © 2020-2023  润新知