• 论文解读(GraphMLP)《GraphMLP: Node Classification without Message Passing in Graph》 Learner


    论文信息

    论文标题:Graph-MLP: Node Classification without Message Passing in Graph
    论文作者:Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang,Erjin Zhou, Yue Gao
    论文来源:2021, ArXiv
    论文地址:download 
    论文代码:download

    1 介绍

      本文工作:

        不使用基于消息传递模块的GNNs,取而代之的是使用Graph-MLP:一个仅在计算损失时考虑结构信息的MLP。

      任务:节点分类。在这个任务中,将由标记和未标记节点组成的图输入到一个模型中,输出是未标记节点的预测。

    2 方法

    2.1 GNN 框架

      普通的 GNN 框架:

        $\mathbf{X}^{(l+1)}=\sigma\left(\widehat{A} \mathbf{X}^{(l)} W^{(l)}\right)\quad\quad\quad(1)$  

        $\widehat{A}=\mathbf{D}^{-\frac{1}{2}}(A+I) \mathbf{D}^{-\frac{1}{2}}\quad\quad\quad(2)$

    2.2 Graph-MLP

      整体框架如下:

      

    2.2.1 MLP-based Structure

      结构: linear-activation-layer normalization-dropout-linear-linear

      即:

        $\begin{array}{c} \mathbf{X}^{(1)}=\text { Dropout }\left(L N\left(\sigma\left(\mathbf{X} W^{0}\right)\right)\right) \quad\quad\quad(3)\\ \mathbf{Z}=\mathbf{X}^{(1)} W^{1} \quad\quad\quad(4)\\ \mathbf{Y}=\mathbf{Z} W^{2}\quad\quad\quad(5) \end{array}$

      其中:$Z$ 用于 NConterast 损失,$ Y$ 用于分类损失。

    2.2.2 Neighbouring Contrastive Loss

      在 NContast 损失中,认为每个节点的 $\text{r-hop}$ 邻居为正样本,其他节点为负样本。这种损失鼓励正样本更接近目标节点,并根据特征距离推动负样本远离目标节点。采样 $B$ 个邻居,第 $i$ 个节点的 NContrast loss 可以表述为:

        ${\large \ell_{i}=-\log \frac{\sum\limits _{j=1}^{B} \mathbf{1}_{[j \neq i]} \gamma_{i j} \exp \left(\operatorname{sim}\left(\boldsymbol{z}_{i}, \boldsymbol{z}_{j}\right) / \tau\right)}{\sum\limits _{k=1}^{B} \mathbf{1}_{[k \neq i]} \exp \left(\operatorname{sim}\left(\boldsymbol{z}_{i}, \boldsymbol{z}_{k}\right) / \tau\right)}} \quad\quad\quad(6)$

      其中:$\gamma_{i j} $ 表示节点 $i$ 和节点 $j$ 之间的连接强度,这里定义为 $\gamma_{i j}=\widehat{A}_{i j}^{r}$。

      $\gamma_{i j}$ 为非 $0$ 值当且仅当结点 $j$ 是结点 $i$ 的 $r$  跳邻居,即: 

        $\gamma_{i j}\left\{\begin{array}{ll}=0, & \text { node } j \text { is the } r \text {-hop neighbor of node } i \\\neq 0, & \text { node } j \text { is not the } r \text {-hop neighbor of node } i \end{array}\right.$

      总 NContrast loss 为 $loss_{NC}$,而分类损失采用的是传统的交叉熵(用 $loss_{CE}$ 表示 ),因此上述 Graph-MLP 的总损失函数如下:

        $\begin{aligned}\operatorname{loss}_{NC} &=\alpha \frac{1}{B} \sum\limits _{i=1}^{B} \ell_{i}\quad\quad\quad(7)\\\text { loss }_{\text {final }} &=\operatorname{loss}_{C E}+\operatorname{loss}_{N C}\quad\quad\quad(8) \end{aligned}$

    2.2.3 Training

      整个模型以端到端的方式进行训练。【端到端的学习范式:整个学习的流程并不进行人为的子问题划分,而是完全交给深度学习模型直接学习从原始数据到期望输出的映射 】

      $\text{Graph-MLP}$ 模型不需要使用邻接矩阵,在计算训练期间的损失时只参考图结构信息。

      在每个 $batch$ 中,我们随机抽取 $B$ 个节点并取相应的邻接信息 $\widehat{A} \in \mathbb{R}^{B \times B}$ 和节点特征 $\mathbf{X} \in R^{\mathbb{R} \times d}$。对于某些节点 $i$,由于 $batch$ 抽样的随机性,可能会发生 $batch$ 中没有 $\text{positive samples}$。在这种情况下,将删除节点 $i$ 的损失。本文模型对 $\text{positive samples}$ 和  $\text{negative samples}$ 的比例是稳健的,而没有特别调整的比例。

      算法如  Algorithm 1 所示:

      

    2.2.4 Inference

      在推断过程中,传统的图模型如 GNN 同时需要邻接矩阵和节点特征作为输入。不同的是,我们基于MLP的方法只需要节点特征作为输入。因此,当邻接信息被损坏或丢失时,Graph-MLP仍然可以提供一致可靠的结果。在传统的图建模中,图信息被嵌入到输入的邻接矩阵中。对于这些模型,图节点转换的学习严重依赖于内部消息传递,而内部消息传递对每个邻接矩阵输入中的连接都很敏感。然而,我们对图形结构的监督是应用于损失水平的。因此,我们的框架能够在节点特征转换过程中学习一个图结构的分布,而不需要进行前馈消息传递。这使得我们的模型在推理过程中对特定连接的敏感性较低。

    3 实验

    3.1 数据集

      

    3.2 对引文网络节点分类数据集的性能

      

    3.3 Graph-MLP 与 GNN 的效率

      

    3.4 关于超参数的消融术研究

      

    3.5 嵌入的可视化 

      

    3.6 鲁棒性

      为了证明Graph-MLP在缺失连接下进行推断仍具有良好的鲁棒性,作者在测试过程中的邻接矩阵中添加了噪声,缺失连接的邻接矩阵的计算公式如下:

        $A_{\text {corr }}=A \otimes  mask  +(1-  mask  ) \otimes \mathbb{N} \quad\quad\quad(9)$

        $\operatorname{mask}\left\{\begin{array}{ll} =1, & p=1-\delta \\ =0, & p=\delta \end{array}\right.\quad\quad\quad(10)$

      其中  $\delta$  表示缺失率,$mask  \in n \times n$  决定邻接矩阵中缺失的位置,$mask$ 中的元素取  $1 / 0$  的概率为  $1-\delta / \delta$ 。 $\mathbb{N} \in n \times n$  中的元素取  $1 / 0$  的 概率都为  $0.5$  。

      

      结论:从上图可以看出随着缺失率的增加,GCN的推断性能急剧下降,而Graph-MLP却基本不受影响。

     

  • 相关阅读:
    优秀数
    加法检测器
    数字转换
    选课
    二叉苹果树
    分离与合体
    括号配对
    凸多边形的划分
    能量项链
    石子合并
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/16093227.html
Copyright © 2020-2023  润新知