1 nn.L1Loss
torch.nn.L1Loss(reduction='mean')
就是 MAE(mean absolute error),计算公式为
$\ell(x, y)=L=\left\{l_{1}, \ldots, l_{N}\right\}^{\top}, \quad l_{n}=\left|x_{n}-y_{n}\right|$
$\ell(x, y)=\left\{\begin{array}{ll}\operatorname{mean}(L), & \text { if reduction }=\text { 'mean'; } \\\operatorname{sum}(L), & \text { if reduction }=\text { 'sum' }\end{array}\right.$
例子:逐元素计算
input = torch.arange(1,7.).view(2,3)
target = torch.arange(6).view(2,3)
print(input)
print(target)
"""
tensor([[1., 2., 3.],
[4., 5., 6.]])
tensor([[0, 1, 2],
[3, 4, 5]])
"""
loss = nn.L1Loss(reduction='sum')
output = loss(input, target)
print(output)
"""
tensor(6.)
"""
loss = nn.L1Loss(reduction='mean')
output = loss(input, target)
print(output)
"""
tensor(1.)
"""
2 nn.MSELoss
torch.nn.MSELoss(reduction='mean')
如其名,mean squared error,也就是 L2 正则项,计算公式为
$\ell(x, y)=\left\{\begin{array}{ll}\operatorname{mean}(L), & \text { if reduction }=\text { 'mean'; } \\\operatorname{sum}(L), & \text { if reduction }=\text { 'sum' }\end{array}\right.$
$\ell(x, y)=L=\left\{l_{1}, \ldots, l_{N}\right\}^{\top}, \quad l_{n}=\left(x_{n}-y_{n}\right)^{2}$
有 mean 和 sum 两种模式选,通过 reduction 控制。
例子:逐元素计算
loss = nn.MSELoss(reduction="mean")
output = loss(input, target)
print(output)
"""
tensor(1.)
"""
loss = nn.MSELoss(reduction="sum")
output = loss(input, target)
print(output)
"""
tensor(6.)
"""
从上述实验可以看出
$l_{n}=\left(x_{n}-y_{n}\right)^{2}$
是逐元素计算。
3 nn.SmoothL1Loss
torch.nn.SmoothL1Loss(reduction='mean', beta=1.0)
对 L1 做了一点平滑,比起MSELoss,对于 outlier 更加不敏感。
$\ell(x, y)=L=\left\{l_{1}, \ldots, l_{N}\right\}^{T}$
$l_{n}=\left\{\begin{array}{ll}0.5\left(x_{n}-y_{n}\right)^{2} / \text { beta }, & \text { if }\left|x_{n}-y_{n}\right|<\text { beta } \\\left|x_{n}-y_{n}\right|-0.5 * \text { beta }, & \text { otherwise }\end{array}\right.$
在Fast-RCNN中使用以避免梯度爆炸。
例子:逐元素计算
loss = nn.MSELoss(reduction="sum")
output = loss(input, target)
print(output)
"""
tensor(6.)
"""
loss = nn.SmoothL1Loss(reduction="mean")
output = loss(input, target)
print(output)
"""
tensor(0.5000)
"""
loss = nn.SmoothL1Loss(reduction="mean",beta = 3)
output = loss(input, target)
print(output)
"""
tensor(0.1667)
"""
4 nn.BCELoss 以及 nn.BCEWithLogitsLoss
torch.nn.BCELoss(weight=None,reduction='mean')
Binary Cross Entropy,公式如下:
$\ell(x, y)=\left\{\begin{array}{ll}\operatorname{mean}(L), & \text { if reduction }=\text { 'mean'; } \\\operatorname{sum}(L), & \text { if reduction }=\text { 'sum' }\end{array}\right.$
$\ell(x, y)=L=\left\{l_{1}, \ldots, l_{N}\right\}^{\top}, \quad l_{n}=-w_{n}\left[y_{n} \cdot \log x_{n}+\left(1-y_{n}\right) \cdot \log \left(1-x_{n}\right)\right]$
双向的交叉熵,相当于交叉熵公式的二分类简化版,可以用于分类不互斥的多分类任务。
BCELoss需要先手动对输入 sigmoid,然后每一个位置如果分类是 1 则加 $-log(exp(x))$ 否则加 $-log(exp(1-x))$,最后求取平均。
BCEWithLogitsLoss 则不需要 sigmoid,其他都完全一样。
例子:逐元素计算。
target = torch.tensor([[1,0,1],[0,1,1]],dtype = torch.float32)
raw_output = torch.randn(2,3,dtype = torch.float32)
output = torch.sigmoid(raw_output)
print(output)
result = np.zeros((2,3))
for ix in range(2):
for iy in range(3):
if(target[ix, iy]==1):
result[ix, iy] += -np.log(output[ix, iy])
elif(target[ix, iy]==0):
result[ix, iy] += -np.log(1-output[ix, iy])
print(result)
print(np.mean(result))
loss_fn = torch.nn.BCELoss(reduction='none')
print(loss_fn(output, target))
loss_fn = torch.nn.BCELoss(reduction='mean')
print(loss_fn(output, target))
loss_fn = torch.nn.BCEWithLogitsLoss(reduction='sum')
print(loss_fn(raw_output, target))
tensor([[0.5316, 0.6816, 0.4768],
[0.6485, 0.3037, 0.5490]])
[[0.63186073 1.14431179 0.74067789]
[1.04543173 1.19187558 0.59973639]]
0.892315685749054
tensor([[0.6319, 1.1443, 0.7407],
[1.0454, 1.1919, 0.5997]])
tensor(0.8923)
tensor(5.3539)
5 nn.CrossEntropyLoss
torch.nn.CrossEntropyLoss(weight=None, ignore_index=- 100, reduction='mean', label_smoothing=0.0)
经典Loss, 计算公式为:
$\text { weight }[\text { class }]\left(-\log \left(\frac{\exp (x[\text { class }])}{\sum\limits_{j} \exp (x[j])}\right)\right)=\text { weight }[\text { class }]\left(-x[\text { class }]+\log \left(\sum\limits_{j} \exp (x[j])\right)\right)$
相当于先将输出值通过 softmax 映射到每个值在 $[0,1]$,和为 $1$ 的空间上。
希望正确的 class 对应的 loss 越小越好,所以对 $\left(\frac {\exp (x[\text {class}])}{\sum\limits _{j} \exp (x[j])}\right)$ 求取 $-log()$, 把 $[0,1]$ 映射到 $[0,+\infty]$ 上,正确项的概率占比越大,整体损失就越小。
torch里的CrossEntropyLoss(x) 等价于 NLLLoss(LogSoftmax(x))
class GMLP(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout): super(GMLP, self).__init__() self.nhid = nhid self.mlp = Mlp(nfeat, self.nhid, dropout) self.classifier = Linear(self.nhid, nclass) def forward(self, x): Z = self.mlp(x) if self.training: x_dis = get_feature_dis(Z) class_feature = self.classifier(Z) class_logits = F.log_softmax(class_feature, dim=1) if self.training: return class_logits, x_dis else: return class_logits loss_train_class = F.nll_loss(output[idx_train], labels[idx_train])
预期输入未normalize过的score,输入形状和NLL一样,为$(N,C)和(N)$
例子:按样本数计算
target = torch.tensor([1,0,3])
output = torch.randn(3,5)
print(output)
"""
tensor([[-2.5728, -0.4581, -0.2017, 1.8813, 0.4544],
[-0.7278, 0.6300, 0.6510, -1.7570, 1.1788],
[-0.4660, 0.0410, 0.6876, 0.8966, 0.1446]])
"""
loss_fn = torch.nn.CrossEntropyLoss(reduction='mean')
loss = loss_fn(output, target)
print(loss)
"""
tensor(2.1940)
"""
loss_fn = torch.nn.CrossEntropyLoss(reduction='sum')
loss = loss_fn(output, target)
print(loss)
"""
tensor(6.5821)
"""
例子:手写版
target = torch.tensor([1,0,3])
output = torch.randn(3,5)
print(output)
"""
tensor([[-0.1168, 1.5417, 1.1748, -1.1856, -0.1233],
[ 0.2074, -0.7376, -0.8934, 0.0899, 0.5337],
[-0.5323, -0.2945, -0.1710, 1.5925, 1.3654]])
"""
result = np.array([0.0, 0.0, 0.0])
for ix in range(3):
log_sum = 0.0
for iy in range(5):
if(iy==target[ix]):
result[ix] += -output[ix, iy]
log_sum += np.exp(output[ix, iy])
result[ix] += np.log(log_sum)
print(result)
print(np.mean(result))
loss_fn = torch.nn.CrossEntropyLoss(reduction='mean')
loss = loss_fn(output, target)
print(loss.item())
"""
[0.75984335 1.3853296 0.80614853]
0.9837738275527954
0.9837737679481506
"""
6 nn.NLLLoss
torch.nn.NLLLoss(weight=None,ignore_index=- 100, reduction='mean')
negative log likelihood loss,用于训练 n 类分类器,对于不平衡数据集,可以给类别添加 weight,计算公式为
$l_{n}=-w_{y_{n}} x_{n, y_{n}}$
$-w_{c}=\text { weight }[c] \cdot 1$
预期输入形状 $(N,C)$ 和 $(N)$,其中 $N$ 为 batch 大小,$C$ 为类别数;
计算每个 case 的 target 对应类别的概率的负值,然后求取平均/和,一般与一个 LogSoftMax 连用从而获得对数概率。
例子:按样本数计算
target = torch.tensor([1,0,3])
output = torch.randn(3,5)
print(output)
loss_fn = torch.nn.NLLLoss(reduction='mean')
loss = loss_fn(output, target)
print(loss)
loss_fn = torch.nn.NLLLoss(reduction='sum')
loss = loss_fn(output, target)
print(loss)
"""
tensor([[ 1.5083, 0.1846, -1.8400, -0.0068, -0.1943],
[ 0.5303, -0.0350, -0.3924, 0.3026, 0.6159],
[ 2.0047, -1.0653, 0.0718, -0.8632, -1.0695]])
tensor(0.0494)
tensor(0.1482)
"""
显然不是逐元素计算。
例子:
import torch
input=torch.randn(3,3)
soft_input = torch.nn.Softmax(dim=0)
soft_input(input)
"""
tensor([[0.2603, 0.6519, 0.5811],
[0.5248, 0.3026, 0.1783],
[0.2148, 0.0455, 0.2406]])
"""
#对softmax结果取log
torch.log(soft_input(input))
"""
tensor([[-1.3458, -0.4279, -0.5428],
[-0.6447, -1.1952, -1.7243],
[-1.5379, -3.0898, -1.4248]])
"""
假设标签是[0,1,2],第一行取第0个元素,第二行取第1个,第三行取第2个,去掉负号,即[0.3168,3.3093,0.4701],求平均值,就可以得到损失值。
(0.3168+3.3093+0.4701)/3
"""
1.3654000000000002
"""
loss=torch.nn.NLLLoss()
target=torch.tensor([0,1,2])
loss(input,target)
"""
tensor(-0.1395)
"""
所以 nn.NLLLoss 计算方式为:log(softmax) 取平均