• HDU 6165 FFF at Valentine(Tarjan缩点+拓扑排序)


    FFF at Valentine

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 575    Accepted Submission(s): 281

    Problem Description

    At Valentine's eve, Shylock and Lucar were enjoying their time as any other couples. Suddenly, LSH, Boss of FFF Group caught both of them, and locked them into two separate cells of the jail randomly. But as the saying goes: There is always a way out , the lovers made a bet with LSH: if either of them can reach the cell of the other one, then LSH has to let them go.
    The jail is formed of several cells and each cell has some special portals connect to a specific cell. One can be transported to the connected cell by the portal, but be transported back is impossible. There will not be a portal connecting a cell and itself, and since the cost of a portal is pretty expensive, LSH would not tolerate the fact that two portals connect exactly the same two cells.
    As an enthusiastic person of the FFF group, YOU are quit curious about whether the lovers can survive or not. So you get a map of the jail and decide to figure it out.


     
    Input

    ∙Input starts with an integer T (T≤120), denoting the number of test cases.
    ∙For each case,
    First line is two number n and m, the total number of cells and portals in the jail.(2≤n≤1000,m≤6000)
    Then next m lines each contains two integer u and v, which indicates a portal from u to v.


     
    Output

    If the couple can survive, print “I love you my love and our love save us!”
    Otherwise, print “Light my fire!”


     
    Sample Input
    3
    5 5
    1 2
    2 3
    2 4
    3 5
    4 5
     
    3 3
    1 2
    2 3
    3 1
     
    5 5
    1 2
    2 3
    3 1
    3 4
    4 5
     
    Sample Output
    Light my fire!
    I love you my love and our love save us!
    I love you my love and our love save us!

    题目链接:HDU 6165

    似乎比较模版的一道题目,一开始以为是一旦某个缩点后的点的出度超过2就不行了,实际上是可以的,比如1->2、2->3、1->3,这样是三个连通分量且1的出度为2,但是任意取两个点$a,b$还是可以从$a$到达$b$或者$b$到达$a$的,因此更进一步应该是考虑拓扑序上是否同时存在两个可行的点,如果存在说明可以走分岔路这样一来至少分岔路上的两个点就是无法到达的

    代码:

    #include <stdio.h>
    #include <algorithm>
    #include <cstdlib>
    #include <cstring>
    #include <bitset>
    #include <string>
    #include <stack>
    #include <cmath>
    #include <queue>
    #include <set>
    #include <map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)+1)
    #define MID(x,y) ((x+y)>>1)
    #define fin(name) freopen(name,"r",stdin)
    #define fout(name) freopen(name,"w",stdout)
    #define CLR(arr,val) memset(arr,val,sizeof(arr))
    #define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
    typedef pair<int, int> pii;
    typedef long long LL;
    const double PI = acos(-1.0);
    const int N = 10010;
    const int M = 60010;
    struct edge
    {
        int to, nxt;
    } E[M], e[M];
    int head[N], tot;
    int dfn[N], low[N], st[N], ins[N], scc, in[N], belong[N], ts, top;
    int n, m;
    int H[N], Tot;
    
    void init()
    {
        CLR(head, -1);
        tot = 0;
        CLR(dfn, 0);
        CLR(low, 0);
        CLR(ins, 0);
        scc = 0;
        CLR(in, 0);
        ts = top = 0;
        CLR(H, -1);
        Tot = 0;
    }
    inline void add(int s, int t)
    {
        E[tot].to = t;
        E[tot].nxt = head[s];
        head[s] = tot++;
    }
    inline void Add(int s, int t)
    {
        e[Tot].to = t;
        e[Tot].nxt = H[s];
        H[s] = Tot++;
    }
    void Tarjan(int u)
    {
        dfn[u] = low[u] = ++ts;
        ins[u] = 1;
        st[top++] = u;
        int v;
        for (int i = head[u]; ~i; i = E[i].nxt)
        {
            v = E[i].to;
            if (!dfn[v])
            {
                Tarjan(v);
                low[u] = min(low[u], low[v]);
            }
            else if (ins[v])
                low[u] = min(low[u], dfn[v]);
        }
        if (low[u] == dfn[u])
        {
            ++scc;
            do
            {
                v = st[--top];
                ins[v] = 0;
                belong[v] = scc;
            } while (u != v);
        }
    }
    int solve()
    {
        queue<int>Q;
        int i, j;
        for (i = 1; i <= n; ++i)
            if (!dfn[i])
                Tarjan(i);
        for (i = 1; i <= n; ++i)
        {
            for (j = head[i]; ~j; j = E[j].nxt)
            {
                int v = E[j].to;
                if (belong[v] == belong[i])
                    continue;
                ++in[belong[v]];
                Add(belong[i], belong[v]);
            }
        }
        for (i = 1; i <= scc; ++i)
            if (!in[i])
                Q.push(i);
        while (!Q.empty())
        {
            if (Q.size() >= 2)
                return 0;
            int u = Q.front();
            Q.pop();
            for (int i = H[u]; ~i; i = e[i].nxt)
            {
                int v = e[i].to;
                if (--in[v] == 0)
                    Q.push(v);
            }
        }
        return 1;
    }
    int main(void)
    {
        int T, a, b;
        scanf("%d", &T);
        while (T--)
        {
            init();
            scanf("%d%d", &n, &m);
            while (m--)
            {
                scanf("%d%d", &a, &b);
                add(a, b);
            }
            solve() ? puts("I love you my love and our love save us!") : puts("Light my fire!");
        }
        return 0;
    }
  • 相关阅读:
    BAT脚本批量调用Sql执行文件 (SqlServer 数据库)
    树莓派系统刻录到首次登陆等问题
    数据库视图的使用
    MQ配置安装
    PLSQL集合类型
    PLSQL-包函数存储过程
    Oracle 字段拆分替换在合并成一条
    ORACLE-EXP和IMP方法介绍
    javascript几个月前的时间
    返回顶部实现方式
  • 原文地址:https://www.cnblogs.com/Blackops/p/7417569.html
Copyright © 2020-2023  润新知