• Codeforces Round #620 (Div. 2) ABC 题解


    A. Two Rabbits

    题意:数轴上有x,y,且x<y。x可以每次+a,y可以每次-b。问能否xy相遇。

    思路:只要xy差值是a+b的倍数即可。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll x, y, a, b;
            cin>>x>>y>>a>>b;
            if((y-x)%(a+b)==0) cout<<(y-x)/(a+b)<<endl;
            else cout<<-1<<endl;
        }
        return 0;
    }
    
    

    B. Longest Palindrome

    题意:给n个不同的字符串,问你删除掉若干个之后,然后把这些字符串任意拼接,能否组成一个回文串。

    思路:一开始以为各个字符也能打乱卡了一下,后面才发现只是字符串直接打乱重组。
    这样其实很好想了。首先我们考虑如果这个字符串本身是回文串的话,因为n个字符串互不相同,那么肯定找不出另一个跟它匹配的。所以如果存在,只能放在中间。
    其次就是两两搭配,如果串a和串b放在两边能构成回文,就加进去。写的时候用一个head和tail的vector存一下结果就行了。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    bool vis[505];
    
    bool check(string s)
    {
        for(int i=0, j=s.size()-1; i<=j; i++, j--)
        if(s[i]!=s[j]) return false;
        return true;
    }
    
    int main()
    {
        ll n, m;
        cin>>n>>m;
        vector<string> s;
        vector<string> head;
        vector<string> tail;
        int flag = 1;
        int cnt = 0;
        string mid;
        rep(i,1,n)
        {
            string item;
            cin>>item;
            s.pb(item);
            if(check(item))
            cnt++, mid = item;
        }
        for(int j=0; j<n; j++)
        {
            if(vis[j]) continue;
            for(int k=j+1;k<n;k++)
            {
                if(vis[k]) continue;
                string tmp = s[j] + s[k];
                if(check(tmp))
                {
                    head.pb(s[j]), tail.pb(s[k]), vis[j] = vis[k] = 1;
                    break;
                }
            }
        }
        if(cnt) head.pb(mid);
        int len = 0;
        for(int i=0; i<head.size(); i++) len += head[i].size();
        for(int i=0; i<tail.size(); i++) len += tail[i].size();
        cout<<len<<endl;
        for(int i=0; i<head.size(); i++) cout<<head[i];
        for(int i=tail.size()-1; i>=0; i--) cout<<tail[i];
        cout<<'
    ';
        return 0;
    }
    
    

    C. Air Conditioner

    题意:给你n个区间,每个区间有一个时刻,刚开始你的数为m,你可以每过1个单位时间就+1或-1,问你能否使得每个区间时刻到达时满足m在区间范围里。

    思路:贪心。我们遍历到每个区间的时候,就先得到在满足前面所有区间的情况下,能达到的最短点最小值和右端点最大值。
    然后看看当前区间与能得到的区间有无交集即可。满足的话继续更新这个最大范围区间

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    typedef struct Information
    {
        ll t;
        ll l;
        ll r;
    }I;
    I a[500];
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll n = read(), m = read();
            rep(i,1,n) a[i].t = read(), a[i].l = read(), a[i].r = read();
            int flag = 1;
            ll mi = m, ma = m;  //mi和ma记录当前区间能达到的最大范围的左右端点
            ll t = 0;       //刚开始时刻为0
            for(int i=1;i<=n;i++)
            {
                ll curL = a[i].l, curR = a[i].r;        //当前时刻的满足约束的最大区间
                rep(j,i+1,n)
                {
                    if(a[i].t != a[j].t)
                    {
                        i = j-1;
                        break;
                    }
                    curL = max(curL,a[j].l), curR = min(curR, a[j].r);      //更新约束
                }
                if(a[i].t==a[n].t) i=n;     //后面都是一个时刻了
                if(curL>curR||curL>ma+a[i].t - t||curR<mi - a[i].t + t)     //如果当前约束区间合法且能够由之前的满足题意区间达到就行(有交集),不然就直接break。
                {
                    flag = 0;
                    break;
                }
                mi = max( mi - a[i].t + t, curL), ma = min(ma + a[i].t - t, curR);      //更新最大范围
                t = a[i].t;
            }
            puts(flag?"YES":"NO");
        }
        return 0;
    }
    
    

  • 相关阅读:
    半平面交模板
    poj2420(模拟退火大法好)
    hdu4266(三维凸包模板题)
    三维凸包模板
    三维空间直线最近点对hdu4741
    3维计算几何模板
    hdu1174(3维射线与圆是否相交)
    重点记忆
    UNICODE,GBK,UTF-8区别
    AJAX 基础
  • 原文地址:https://www.cnblogs.com/Bgwithcode/p/13652106.html
Copyright © 2020-2023  润新知