• 二分搜索总结


    时间复杂度:

    1)每次用O(1)的时间,将规模为n的问题变为n/2,则总时间复杂度为O(logn).

    2)每次用O(n)的时间,将规模为n的问题变为n/2,则总时间复杂度为O(n).

    因为T(n) = T(n/2) + O(n) = T(n/4) + O(n/2) + O(n) = .... = T(1) + O(2) + O(4) + ... + O(n/2) + O(n) 约等于 O(n)

    2 + 4 + 8 +..+ n/2 + n = 2n-2

    由时间复杂度可以反推会用到的算法:

     一. 找数组中第一个/最后一个 满足某个条件的位置:

    1. 第一次出现的下标:

    思路:使用二分法逐渐把范围缩小,最后start和end指向两个相邻的元素。再进行double check。

    class Solution {
    public:
        /**
         * @param nums: The integer array.
         * @param target: Target to find.
         * @return: The first position of target. Position starts from 0.
         */
        int binarySearch(vector<int> &nums, int target) {
            // write your code here
            if(nums.empty())
                return -1;   //target不存在数组中,返回-1
            int start = 0, end = nums.size()-1;
            
            //相邻就退出循环
            // start = 1, end = 2 就要退出
            while(start + 1 < end){
                int mid = start + (end-start)/2;
                if(target == nums[mid])
                    end = mid;
                else if(target < nums[mid])
                //也可写成 end = mid-1;
                    end = mid;
                else
                //或 start = mid+1;
                    start = mid;
            }
            //double check
            if(nums[start] == target)
                return start;
            if(nums[end] == target)
                return end;
            //未找到    
            return -1;
        }
    };

    2. 最后一次出现的下标:

     

     注意while循环的判断条件一定要写成:

    start+1 < end

    因为写成start<end时会导致死循环。并注意在double check时,要先check nums[end], 再check nums[start], 因为是找最后一个满足条件的。

    
    
    class Solution {
    public:
        /**
         * @param nums: An integer array sorted in ascending order
         * @param target: An integer
         * @return: An integer
         */
        int lastPosition(vector<int> &nums, int target) {
            // write your code here
            //start<end => dead loop
            //e.g. [2,2], target = 2, mid=(0+1)/2=0
            //then start = mid = 0, always < end
            if(nums.empty())
                return -1;
            int start = 0, end = nums.size()-1;
            while(start+1 < end){
                int mid = start + (end-start)/2;
                if(nums[mid] == target)
                    start = mid;
                else if(target > nums[mid])
                    start = mid;
                else
                    end = mid;
            }
            if(nums[end] == target)
                return end;
            if(nums[start] == target)
                return start;
            return -1;
        }
    };

     3. 找到某个数在数组中出现的坐标区间:

    注意 if else 要写全...

    class Solution {
    public:
        /**
         * @param A: an integer sorted array
         * @param target: an integer to be inserted
         * @return: a list of length 2, [index1, index2]
         */
        vector<int> searchRange(vector<int> &A, int target) {
            // write your code here
            int n = A.size();
            vector<int> res(2, -1);
            if(A.empty())
                return res;
            
            int start = 0, end = n-1;
            while(start+1<end){
                int mid = start + (end-start)/2;
                if(A[mid] == target)
                    end = mid;  //找target的起始坐标
                else if(target < A[mid])
                    end = mid;
                else
                    start = mid;
            }
            if(A[start] == target)
                res[0] = start;
            else if(A[end] == target)
                res[0] = end;
            
            start = 0, end = n-1;
            while(start+1<end){
                int mid = start + (end-start)/2;
                if(A[mid] == target)
                    start = mid;  //找target的结尾坐标
                else if(target < A[mid])
                    end = mid;
                else
                    start = mid;
            }
            if(A[end] == target)
                res[1] = end;
            else if(A[start] == target)
                res[1] = start;
            
            return res;
        }
    };

      

    3. 找到target在数组中插入的位置:即如果找到相等的值就插入到这个值所在的索引;找到第一个比target大的值,就插入到这个值的位置上,代码是找到最后一个比target小的位置,然后将target插入到这个位置+1处。

    class Solution {
    public:
        /**
         * @param A: an integer sorted array
         * @param target: an integer to be inserted
         * @return: An integer
         */
        int searchInsert(vector<int> &A, int target) {
            // write your code here
            //找到第一个大于等于target的位置
            if(A.empty())
                return 0;
            if(target<A[0])
                return 0;
                
            int start = 0, end = A.size()-1;
            //找到最后一个小于等于target的位置
            while(start+1 < end){
                int mid = start + (end-start)/2;
                if(A[mid] == target)
                    return mid;
                else if(target < A[mid])
                    end = mid;
                else 
                    start = mid;
            }
            if(A[end] == target)
                return end;
            else if(A[end] < target)
                return end+1;
            if(A[start] == target)
                return start;
            else if(A[start] < target)
                return start+1;
        }
    };

    二分法:

    class Solution {
    public:
        /**
         * @param matrix: matrix, a list of lists of integers
         * @param target: An integer
         * @return: a boolean, indicate whether matrix contains target
         */
        bool searchMatrix(vector<vector<int>> &matrix, int target) {
            // write your code here
            if(matrix.empty() || matrix[0].empty())
                return false;
            int n = matrix.size(), m = matrix[0].size();
            int start = 0, end = n*m-1;
            int rol=0, col = 0;
            while(start+1 < end){
                int mid = start + (end-start)/2;
                rol= mid/m, col = mid%m;
                if(matrix[rol][col] == target)
                    return true;
                else if(target < matrix[rol][col])
                    end = mid;
                else
                    start = mid;
            }
            
            if(matrix[start/m][start%m] == target || matrix[end/m][end%m] == target)
                return true;
            return false;
        }
        
    };

    思路:从矩阵的左下角出发,每次去掉一行或一列,因为是统计矩阵中等于target的次数,所以遇到相等的数值,需要将res+1,然后再将i-1和j+1继续寻找。

    class Solution {
    public:
        /**
         * @param matrix: A list of lists of integers
         * @param target: An integer you want to search in matrix
         * @return: An integer indicate the total occurrence of target in the given matrix
         */
        int searchMatrix(vector<vector<int>> &matrix, int target) {
            // write your code here
            //从左下角出发,每次删除一行或一列
            if(matrix.empty() || matrix[0].empty())
                return 0;
            int n = matrix.size(), m = matrix[0].size();
            int res = 0;
            int i=n-1, j = 0;
            while(i>=0 && j<=m-1){
                if(matrix[i][j] == target){
                    res ++;
                    i--;
                    j++;
                }
                    
                else if(target < matrix[i][j]){
                    i--;
                }
                else 
                    j++;
            }
            return res;
        }
    };

    // Forward declaration of isBadVersion API.
    bool isBadVersion(int version);
    
    class Solution {
    public:
        int firstBadVersion(int n) {
            //找到第一个bad version
            int start = 0, end = n;
            while(start+1 < end){
                int mid = start + (end-start)/2;
                if(isBadVersion(mid))
                    end = mid;
                else
                    start = mid;
            }
            if(isBadVersion(start))
                return start;
            return end;
        }
    };

    class Solution {
    public:
        int peakIndexInMountainArray(vector<int>& A) {
            int start = 0, end = A.size()-1;
            while(start+1 < end){
                int mid = start + (end-start)/2;
                if(A[mid] < A[mid+1])
                    start = mid;
                else
                    end = mid;
            }
            if(A[start]>A[end])
                return start;
            else
                return end;
        }
    };

    进阶版:

    解法一:O(n) 线性扫描一遍。每次只需要比较

     nums[i]>nums[i+1]

    分三种情况:

     第二种情况是递增的数组,最后返回的是数组的最后一个元素,即nums.size()-1

     

    class Solution {
    public:
        int findPeakElement(vector<int>& nums) {
            int n = nums.size();
            for(int i=0; i<n-1; i++){
                 if(nums[i]>nums[i+1])
                     return i;
             }
            return n-1;
        }
    };

    解法二:二分法

    class Solution {
    public:
        int findPeakElement(vector<int>& nums) {
            int start = 0, stop = nums.size()-1;
            while(start+1 < stop){
                int mid = start + (stop-start)/2;
                if(nums[mid] < nums[mid+1])
                    start = mid;
                else
                    stop = mid;
            }
            if(nums[start]>nums[stop])
                return start;
            else
                return stop;
        }
    };

    二分法:可以将这个旋转数组看作两段递增的数组,然后多加一层判断。

    class Solution {
    public:
        int search(vector<int>& nums, int target) {
            if(nums.empty())
                return -1;
            int start = 0, end = nums.size()-1;
            while(start+1 < end){
                int mid = start + (end-start)/2;
                if(nums[mid] == target)
                    return mid;
                if(nums[start] < nums[mid]){
                    //在左半段
                    if(target >= nums[start] && target <= nums[mid])
                        end = mid;
                    else
                        start = mid;
                }
                else{
                    //在右半段
                    if(target >= nums[mid] && target <= nums[end])
                        start = mid;
                    else
                        end = mid;
                }
            }
            if(nums[start] == target)
                return start;
            else if(nums[end] == target)
                return end;
            return -1;
        }
    };

    进阶版:旋转数组中有重复元素,时间复杂度只能是O(n)。

    class Solution {
    public:
        bool search(vector<int>& nums, int target) {
            if(nums.empty())
                return false;
            int start = 0, end = nums.size()-1;
            while(start + 1 < end){
                int mid = start + (end-start)/2 ;
                if(nums[mid] == target)
                    return true;
                if(nums[start] < nums[mid]){
                    if(target<=nums[mid] && target>= nums[start])
                        end = mid;
                    else
                        start = mid;
                }
                else if(nums[start] > nums[mid]){
                    if(target>=nums[mid] && target<=nums[end])
                        start= mid;
                    else
                        end = mid;
                }
                else 
                    //nums[start] > nums[mid]
                    start ++ ;
            }
            if(nums[start] == target || nums[end] == target)
                return true;
            return false;
        }
    };

     

    参考思路:https://leetcode.com/problems/find-minimum-in-rotated-sorted-array/solution/

    class Solution {
    public:
        int findMin(vector<int>& nums) {
            if(nums.size()==1)
                return nums[0];
            
            int start = 0, end = nums.size()-1;
            if(nums[end] > nums[0])
                //说明没有反转,本身是一个排序好的数组
                return nums[0];
            
            while(start + 1 < end){
                int mid = start + (end-start)/2 ;
                if(nums[mid] < nums[mid-1])
                    return nums[mid];
                if(nums[mid] > nums[mid+1])
                    return nums[mid+1];
                if(nums[mid] > nums[0])
                    start = mid;
                else
                    end = mid;
            
            }
            if(nums[start]>nums[end])
                return nums[end];
            else
                return nums[start];
     
        }
    };

    二分+分治:

    class Solution {
    public:
        double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
            int len = nums1.size() + nums2.size();
            if(len % 2 == 0)
                //长度为偶数 中位数为中间两个数的平均值
                return (findKth(nums1, 0, nums2, 0, len/2) + findKth(nums1, 0, nums2, 0, len/2 +1))/2.0;
            else
                return findKth(nums1, 0, nums2, 0, len/2 +1);
        }
        int findKth(vector<int>& n1, int start1, vector<int>& n2, int start2, int k){
            //递归终止条件
            if(start1 >= n1.size())
                return n2[start2 + k -1];
            if(start2 >= n2.size())
                return n1[start1 + k -1];
            if(k==1)
                return min(n1[start1], n2[start2]);
            
            //若k/2的长度不在nums1中,则将其k/2处设为最大值,表示只会删掉/挪动start2的start2指针
            //取n1的第k/2个数
            int halfK1 = start1 + k/2 -1 < n1.size() ? n1[start1 + k/2 -1] : INT_MAX;
            //取n2的第k/2个数
            int halfK2 = start2 + k/2 -1 < n2.size() ? n2[start2 + k/2 -1] : INT_MAX;
            
            if(halfK1 < halfK2)
                return findKth(n1, start1 + k/2, n2, start2, k - k/2);
            else
                return findKth(n1, start1, n2, start2 + k/2, k- k/2);
        }
        
    };

    思路:三步翻转法:先把前一段翻转,再把后一段翻转,再把整个数组翻转。

    class Solution {
    public:
        /**
         * @param nums: An integer array
         * @return: nothing
         */
        void recoverRotatedSortedArray(vector<int> &nums) {
            // write your code here
            
            for(int i=0; i<nums.size()-1; i++){
                if(nums[i] > nums[i+1]){
                    //找到一个比后面一位大的数
                    reverse(nums.begin(), nums.begin()+i+1);  //reverse是左闭右开区间
                    reverse(nums.begin()+i+1, nums.end());
                    reverse(nums.begin(), nums.end());
                }
            }
        }
    };

    class Solution {
    public:
        /**
         * @param str: An array of char
         * @param offset: An integer
         * @return: nothing
         */
        void rotateString(string &str, int offset) {
            // write your code here
            int n = str.size();
            if(n==0)
                return;
            offset %= n;
            reverse(str.begin(), str.begin()+n-offset);
            reverse(str.begin()+n-offset, str.end());
            reverse(str.begin(), str.end());
        }
    };
    class Solution {
    public:
        /**
         * @param str: An array of char
         * @param offset: An integer
         * @return: nothing
         */
        void rotateString(string &str, int offset) {
            // write your code here
            int n = str.size();
            if(n==0)
                return;
            offset %= n;
            str = str.substr(n-offset, offset) + str.substr(0, n-offset);  //substr(pos, len)
        }
    };

    使用O(1)的空间复杂度,思路:先将整个字符串s翻转,处理掉首尾的空格后,再将每个单词翻转,再处理中间的冗余空格。

    class Solution {
    public:
        string reverseWords(string s) {
            //先整体翻转,再逐个单词翻转,需要处理首尾及中间冗余空格
            reverse(s.begin(), s.end());
            int n = s.size();
            int start=0, end = n-1;
            //首空格
            while(start<n && s[start]==' ')
                start++;
            //尾空格
            while(end>=0 && s[end]==' ')
                end--;
            //特殊情况
            if(start > end)
                return "";
            
            //逐个单词翻转
            for(int i=start; i<=end; ){
                while(s[i]==' ' && i<=end)
                    i++;
                int l = i;
                while(s[l]!=' ' && l<=end)
                    l++;
                reverse(s.begin()+i, s.begin()+l);
                i = l;
            }
            
            //处理中间冗余空格
            int tail = start;
            for(int i=start; i<=end; i++){
                if(s[i] == ' ' && s[i-1] == ' ') //去掉重复的空格
                    continue;
                s[tail++] = s[i];
            }
            
            return s.substr(start, tail-start);  //s.substr(pos, len)
        }
    };

    class Solution {
    public:
        bool rotateString(string A, string B) {
            //find()函数在找不到指定值得情况下会返回string::npos
            return A.size()==B.size() && (A+A).find(B) != string::npos;  //把两个A字符串拼起来,若在里面找不到B返回false
        }
    };
  • 相关阅读:
    java8学习之Optional深入详解
    java8学习之Supplier与函数式接口总结
    java8学习之Predicate深入剖析与函数式编程本质
    conda
    matplotlib-折线图、散点图
    欧盟GDPR通用数据保护条例-原文
    python装饰器的应用案例
    python练习汇总
    python分段算利润、税收
    需求-shidebing
  • 原文地址:https://www.cnblogs.com/Bella2017/p/11367837.html
Copyright © 2020-2023  润新知