题意:A是一个从1到N的全排列数组,对于每个A里的元素,都不存在 i<k<j 时, A[k]*2 = A[i] * A[j]
解法一:迭代
C++
class Solution {
public:
vector<int> beautifulArray(int N) {
vector<int> res = {1};
while(res.size()<N){
vector<int> temp;
for(auto x: res){
if(x*2-1<=N)
temp.push_back(x*2-1);
}
for(auto x: res){
if(x*2<=N)
temp.push_back(x*2);
}
//swap(temp, res);
res = temp;
}
return res;
}
};
Python:
class Solution(object): def beautifulArray(self, N): """ :type N: int :rtype: List[int] """ res = [1] while len(res)<N : res = [ i*2-1 for i in res] + [i*2 for i in res]; return [i for i in res if i<=N]
解法二:递归, 个数为N的序列中,奇数的个数为(N+1)/2, 偶数的个数为N/2,故beautifulArray(N) 由 beautifulArray(N/2) + beautifulArray(N/2)
Python:
class Solution(object): def beautifulArray(self, N): """ :type N: int :rtype: List[int] """ if(N==1): return [1] # N为偶 N%2为0;N为奇 N%2为1 odd = [i*2-1 for i in self.beautifulArray(N/2 + N%2)] even = [i*2 for i in self.beautifulArray(N/2)] return odd+even
C++
class Solution { public: vector<int> beautifulArray(int N) { vector<int> res; if(N==1){ res.push_back(1); return res; } vector<int> temp; temp = beautifulArray((N+1)/2); for(auto a: temp) res.push_back(a*2-1); temp = beautifulArray(N/2); for(auto a:temp) res.push_back(a*2); return res; } };