Vasya is a regular participant at programming contests and is already experienced in finding important sentences in long statements. Of course, numbers constraints are important — factorization of a number less than 1000000 is easier than of a number less than 1000000000. However, sometimes it's hard to understand the number at the first glance. Could it be shortened? For example, instead of 1000000 you could write 106106, instead of 1000000000 —109109, instead of 1000000007 — 109+7109+7.
Vasya decided that, to be concise, the notation should follow several rules:
- the notation should only consist of numbers, operations of addition ("+"), multiplication ("*") and exponentiation ("^"), in particular, the use of braces is forbidden;
- the use of several exponentiation operations in a row is forbidden, for example, writing "2^3^4" is unacceptable;
- the value of the resulting expression equals to the initial number;
- the notation should consist of the minimal amount of symbols.
Given nn, find the equivalent concise notation for it.
The only line contains a single integer nn (1≤n≤100000000001≤n≤10000000000).
Output a concise notation of the number nn. If there are several concise notations, output any of them.
2018
2018
1000000007
10^9+7
10000000000
100^5
2000000000
2*10^9
The third sample allows the answer 10^10 also of the length 55.
思路:10^10特判一下,之后剩的位数不超过10位,这样通过改字符来缩减长度最多出现4个字符,又单独的乘法和加法不会缩减长度,所以一定有^,于是我们将n表示成a^b*c+d的形式,a从2枚举到sqrt(n),b从2枚举到loga(n),贪心找最大的c,然后唯一确定一个d,这样就得到了一个sqrt(n)*log(n)复杂度的假算法,会WA9。此算法假在c或d也可能表示成e^f的形式,于是我们通过一个map预处理出所有能表示成这个形式的数,查询的时候和map里的比一下取长度最短就行了。预处理和枚举复杂度都为O(sqrt(n)*log2(n))。
1 #include <iostream> 2 #include <fstream> 3 #include <sstream> 4 #include <cstdlib> 5 #include <cstdio> 6 #include <cmath> 7 #include <string> 8 #include <cstring> 9 #include <algorithm> 10 #include <queue> 11 #include <stack> 12 #include <vector> 13 #include <set> 14 #include <map> 15 #include <list> 16 #include <iomanip> 17 #include <cctype> 18 #include <cassert> 19 #include <bitset> 20 #include <ctime> 21 22 using namespace std; 23 24 #define pau system("pause") 25 #define ll long long 26 #define pii pair<int, int> 27 #define pb push_back 28 #define mp make_pair 29 #define clr(a, x) memset(a, x, sizeof(a)) 30 31 const double pi = acos(-1.0); 32 const int INF = 0x3f3f3f3f; 33 const int MOD = 1e9 + 7; 34 const double EPS = 1e-9; 35 36 /* 37 #include <ext/pb_ds/assoc_container.hpp> 38 #include <ext/pb_ds/tree_policy.hpp> 39 40 using namespace __gnu_pbds; 41 tree<pli, null_type, greater<pli>, rb_tree_tag, tree_order_statistics_node_update> T; 42 */ 43 44 ll n; 45 string ans; 46 void add(string &S, ll t) { 47 char s[29]; 48 int l = 0; 49 while (t) { 50 s[++l] = t % 10; 51 t /= 10; 52 } 53 while (l) { 54 S += s[l] + '0'; 55 --l; 56 } 57 } 58 map<ll, string> mmp; 59 void pre() { 60 for (ll a = 2; a <= sqrt(n + 0.5); ++a) { 61 ll tt = a; 62 for (int b = 2; ; ++b) { 63 tt *= a; 64 if (tt > n) break; 65 string t2 = ""; 66 add(t2, a); 67 t2 += "^"; 68 add(t2, b); 69 if (mmp.count(tt)) { 70 string t1 = mmp[tt]; 71 if (t2.length() < t1.length()) { 72 mmp[tt] = t2; 73 } 74 } else { 75 mmp[tt] = t2; 76 } 77 } 78 } 79 } 80 int main() { 81 scanf("%lld", &n); 82 if (n < 1000) { 83 printf("%lld ", n); 84 } else { 85 pre(); 86 add(ans, n); 87 for (ll a = 2; a <= sqrt(n + 0.5); ++a) { 88 ll tt = a; 89 for (ll b = 2; ; ++b) { 90 tt *= a; 91 if (tt > n) break; 92 string res = ""; 93 add(res, a); 94 res += "^"; 95 add(res, b); 96 ll c = n / tt; 97 for (ll tc = c; tc >= max(1ll, c - 0); --tc) { 98 ll d = n - tt * tc; 99 string res2 = res; 100 if (1 != tc) { 101 res2 += "*"; 102 string res4 = ""; 103 add(res4, tc); 104 if (mmp.count(tc)) { 105 if (res4.length() < mmp[tc].length()) { 106 res2 += res4; 107 } else { 108 res2 += mmp[tc]; 109 } 110 } else { 111 res2 += res4; 112 } 113 } 114 if (d) { 115 res2 += "+"; 116 string res3 = ""; 117 add(res3, d); 118 if (mmp.count(d)) { 119 if (res3.length() < mmp[d].length()) { 120 res2 += res3; 121 } else { 122 res2 += mmp[d]; 123 } 124 } else { 125 res2 += res3; 126 } 127 } 128 if (res2.length() < ans.length()) { 129 ans = res2; 130 } 131 } 132 } 133 } 134 cout << ans << endl; 135 } 136 return 0; 137 }