三角函数基础知识
一、定义:
正弦: (sin A = frac{a}{c} = frac{对边}{斜边})
余弦: (cos A = frac{b}{c} = frac{邻边}{斜边})
正切: ( an A = frac{a}{b} = frac{对边}{邻边})
余切: (cot A = frac{b}{a} = frac{邻边}{对边})
特殊性质: |(sin alpha)| (leq 1) , |(cos alpha)| (leq 1)
二、特殊角三角函数
(0°) | (15°) | (30°) | (45°) | (60°) | (75°) | (90°) | |
---|---|---|---|---|---|---|---|
(sin) | (0) | (frac{sqrt{6}-sqrt{2}}{4}) | (frac{1}{2}) | (frac{sqrt{2}}{2}) | (frac{sqrt{3}}{2}) | (frac{sqrt{6}+sqrt{2}}{4}) | (1) |
(cos) | (0) | (frac{sqrt{6}+sqrt{2}}{4}) | (frac{sqrt{3}}{2}) | (frac{sqrt{2}}{2}) | (frac{1}{2}) | (frac{sqrt{6}-sqrt{2}}{4}) | (0) |
( an) | (0) | (2-sqrt{3}) | (frac{sqrt{3}}{3}) | (1) | (sqrt{3}) | (2+sqrt{3}) | / |
(cot) | / | (2+sqrt{3}) | (sqrt{3}) | (1) | (frac{sqrt{3}}{3}) | (2-sqrt{3}) | (0) |
三、基本公式
-
若 (angle A + angle B = 90°) ,则 (sin A = cos B) , ( an A = cot B)
-
( an A cdot cot A = 1)
-
( an A = frac{sin A}{cos A})
-
(sin^2 A + cos^2 A = 1)
四、三角形面积公式
五、两角和差公式
(sin (alpha pm eta) = sin alpha cdot cos eta pm sin eta cdot cos alpha)
(cos (alpha pm eta) = cos alpha cdot cos eta mp sin alpha cdot sin eta)
( an (alpha pm eta) = frac{ an alpha pm an eta}{1 mp an alpha cdot an eta})
六、倍角公式
(sin 2 alpha = 2 sin alpha cdot cos alpha)
(cos 2 alpha = cos^2 alpha - sin^2 alpha = 1-2sin^2 alpha = 2cos^2 alpha -1)
( an 2 alpha = frac{2 an alpha}{1- an^2 alpha})
七、直线斜率
-
|(k)| (= an heta) , ( heta) 为该直线与 (x) 轴相交所形成的最小夹角