• 基本概率分布图的绘制


    原文地址:https://github.com/AsuraDong/Blog/blob/master/Articles/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/%E5%9F%BA%E6%9C%AC%E6%A6%82%E7%8E%87%E5%88%86%E5%B8%83%E5%9B%BE%E7%9A%84%E7%BB%98%E5%88%B6.md

    import numpy as np
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import math
    import time
    from scipy import stats
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    
    mpl.rcParams['font.sans-serif'] = ['FangSong']
    mpl.rcParams['axes.unicode_minus']=False

    一、绘图介绍

    Bar柱状图(和之后的直方图不同)

    x = np.arange(0,10,0.1)
    y = np.sin(x)
    plt.bar(x,y,width=0.04,linewidth=0.2)
    plt.plot(x,y,'r--',linewidth=2)
    plt.title('Sin曲线')
    plt.xlabel('X')
    plt.ylabel('Y')
    plt.show()

    屁股线

    f(x) = x**x when x>0 and (-x)**(-x) when x<0
    
    def f(x):
        y = np.ones(x.shape)
        i = x>0
        y[i] = np.power(x[i],x[i])
        i = x<0
        y[i] = np.power(-x[i],-x[i])
        return y
    
    x = np.linspace(-1.3,1.3,101)
    y = f(x)
    plt.plot(x,y,'g-',label='x^x',linewidth = 2)
    plt.grid()
    plt.legend(loc='upper left')
    plt.show()

    心形线

    t = np.linspace(0,2*np.pi,100)
    x = 16*np.sin(t)**3
    y = 13*np.cos(t)-5*np.cos(2*t)-2*np.cos(3*t)-np.cos(4*t)
    plt.plot(x,y,'r-',linewidth = 2)
    plt.grid(True)
    plt.show()

    胸型线

    x = np.arange(1,0,-0.001)
    y = (-3 * x * np.log(x) + np.exp(-(40 * (x - 1 / np.e)) ** 4) / 25) / 2 #注意这里在1/e取极值,给它一个智力的波动
    plt.figure(figsize=(5,7))
    plt.plot(y,x,'r-',linewidth = 2) #注意这里是y,x
    plt.grid(True)
    plt.title('胸型线',fontsize = 20)
    plt.show()

    渐开线

    t = np.linspace(0, 50, num=1000)
    x = t*np.sin(t) + np.cos(t)
    y = np.sin(t) - t*np.cos(t)
    plt.plot(x, y, 'r-', linewidth=2)
    plt.grid()
    plt.show()

    正态分布概率密度函数

    ######## 高斯分布/正态分布###############
    
    mu = 0
    sigma = 1
    x  = np.linspace(mu-3*sigma,mu+3*sigma,51)
    y =  np.exp(-(x-mu)**2/(2*sigma**2))/(np.sqrt(2*np.pi)*sigma)
    
    plt.figure()
    #plt.plot(x,y,'ro-',linewidth=2)
    plt.plot(x,y,'ro-',x,y,'g*',linewidth=2,markersize = 3)
    
    plt.xlabel('X',fontsize = 15)
    plt.ylabel('Y',fontsize=15)
    plt.title(r'Normal distribution',fontsize =18)
    #plt.grid(True)
    plt.savefig('NormalDistribution.png')
    plt.show()

    损失函数:Logistic损失(-1,1)/SVM Hinge损失/ 0/1损失

    plt.figure(figsize=(10,8))
    x = np.linspace(start=-2, stop=3, num=1001, dtype=np.float)
    y_logit = np.log(1 + np.exp(-x)) / math.log(2) #Logistic损失(取对数)
    y_boost = np.exp(-x)
    y_01 = x < 0
    y_hinge = 1.0 - x
    y_hinge[y_hinge < 0] = 0
    plt.plot(x, y_logit, 'r-', label='Logistic Loss', linewidth=2)
    plt.plot(x, y_01, 'g-', label='0/1 Loss', linewidth=2)
    plt.plot(x, y_hinge, 'b-', label='Hinge Loss', linewidth=2)
    plt.plot(x, y_boost, 'm--', label='Adaboost Loss', linewidth=2)
    plt.grid()
    plt.legend(loc='upper right')
    plt.savefig('1.png')
    plt.show()

    二、概率分布

    均匀分布(散点图)

    x = np.random.rand(10000) #每个的概率
    t = np.arange(len(x))
    plt.plot(t,x,'g.',label="Uniform Distribution")
    plt.legend(loc="upper left")
    plt.grid()
    plt.show()

    概率分布(直方图)

    x = np.random.rand(10000)
    #x = [1,2,1]
    plt.hist(x,25,color="m",alpha=0.37,label="Uniform Distribution")#直方图
    plt.legend(loc="upper left")
    plt.grid()
    plt.show()

    中心极限定理

    TIMES = 1000
    SIZE = 10000
    resultArr = np.zeros(SIZE)
    for i in range(TIMES):
        resultArr += np.random.uniform(-5,5,SIZE)
    resultArr = resultArr / TIMES
    plt.hist(resultArr,bins=30,color='g',alpha = 0.3,label="Uniform Distribution")
    plt.legend(loc="upper right")
    plt.grid()
    plt.show()

    其他的中心极限定理

    lamda = 7
    p = stats.poisson(lamda)
    y = p.rvs(size=1000)
    mx = 30
    r = (0, mx)
    bins = r[1] - r[0]
    plt.figure(figsize=(15, 8), facecolor='w')
    plt.subplot(121)
    plt.hist(y, bins=bins, range=r, color='g', alpha=0.8, normed=True)
    t = np.arange(0, mx+1)
    plt.plot(t, p.pmf(t), 'ro-', lw=2)
    plt.grid(True)
    
    N = 1000
    M = 10000
    plt.subplot(122)
    a = np.zeros(M, dtype=np.float)
    p = stats.poisson(lamda)
    for i in np.arange(N):
        a += p.rvs(size=M)
    a /= N
    plt.hist(a, bins=20, color='g', alpha=0.8, normed=True)
    plt.grid(b=True)
    plt.show()

    Possion分布

    x = np.random.poisson(lam=5, size=10000)
    print (x)
    pillar = 15
    a = plt.hist(x, bins=pillar, normed=True, range=[0, pillar], color='g', alpha=0.5)
    plt.grid()
    plt.show()
    print (a[1])
    print('-'*10)
    print (a[0].sum())
    [5 4 4 ..., 4 2 3]
    

    [  0.   1.   2.   3.   4.   5.   6.   7.   8.   9.  10.  11.  12.  13.  14.
      15.]
    ----------
    1.0
    
    size = 1000
    lamda = 5
    p = np.random.poisson(lam=lamda, size=size)
    plt.figure()
    plt.hist(p, bins=range(3 * lamda), histtype='bar', align='left', color='r', rwidth=0.8, normed=True)
    plt.grid(b=True, ls=':')
    # plt.xticks(range(0, 15, 2))
    plt.title('Numpy.random.poisson', fontsize=13)
    
    plt.figure()
    r = stats.poisson(mu=lamda)
    p = r.rvs(size=size)
    plt.hist(p, bins=range(3 * lamda), color='r', align='left', rwidth=0.8, normed=True)
    plt.grid(b=True, ls=':')
    plt.title('scipy.stats.poisson', fontsize=13)
    plt.show()

    插值

    rv = np.random.poisson(5)
    x1 = a[1]
    y1 = rv.pmf(x1)
    itp = BarycentricInterpolator(x1, y1)  # 重心插值
    x2 = np.linspace(x.min(), x.max(), 50)
    y2 = itp(x2)
    cs = sp.interpolate.CubicSpline(x1, y1)       # 三次样条插值
    plt.plot(x2, cs(x2), 'm--', linewidth=5, label='CubicSpine')           # 三次样条插值
    plt.plot(x2, y2, 'g-', linewidth=3, label='BarycentricInterpolator')   # 重心插值
    plt.plot(x1, y1, 'r-', linewidth=1, label='Actural Value')             # 原始值
    plt.legend(loc='upper right')
    plt.grid()
    plt.show()
    ---------------------------------------------------------------------------
    
    AttributeError                            Traceback (most recent call last)
    
    <ipython-input-44-28524b0e3309> in <module>()
          1 rv = np.random.poisson(5)
          2 x1 = a[1]
    ----> 3 y1 = rv.pmf(x1)
          4 itp = BarycentricInterpolator(x1, y1)  # 重心插值
          5 x2 = np.linspace(x.min(), x.max(), 50)
    
    
    AttributeError: 'int' object has no attribute 'pmf'
    

    三、 绘制3D图像

    x, y = np.mgrid[-3:3:7j, -3:3:7j]
    print (x)
    print (y)
    u = np.linspace(-3, 3, 101)
    x, y = np.meshgrid(u, u) #注意meshgrid的用法
    print (x)
    print (y)
    z = x*y*np.exp(-(x**2 + y**2)/2) / math.sqrt(2*math.pi)
    # z = x*y*np.exp(-(x**2 + y**2)/2) / math.sqrt(2*math.pi)
    fig = plt.figure()
    ax = fig.add_subplot(111,projection='3d')
    # ax.plot_surface(x, y, z, rstride=5, cstride=5, cmap=cm.coolwarm, linewidth=0.1)  #
    ax.plot_surface(x, y, z, rstride=3, cstride=3, cmap=cm.gist_heat, linewidth=0.5)
    plt.show()
    [[-3. -3. -3. -3. -3. -3. -3.]
     [-2. -2. -2. -2. -2. -2. -2.]
     [-1. -1. -1. -1. -1. -1. -1.]
     [ 0.  0.  0.  0.  0.  0.  0.]
     [ 1.  1.  1.  1.  1.  1.  1.]
     [ 2.  2.  2.  2.  2.  2.  2.]
     [ 3.  3.  3.  3.  3.  3.  3.]]
    [[-3. -2. -1.  0.  1.  2.  3.]
     [-3. -2. -1.  0.  1.  2.  3.]
     [-3. -2. -1.  0.  1.  2.  3.]
     [-3. -2. -1.  0.  1.  2.  3.]
     [-3. -2. -1.  0.  1.  2.  3.]
     [-3. -2. -1.  0.  1.  2.  3.]
     [-3. -2. -1.  0.  1.  2.  3.]]
    [[-3.   -2.94 -2.88 ...,  2.88  2.94  3.  ]
     [-3.   -2.94 -2.88 ...,  2.88  2.94  3.  ]
     [-3.   -2.94 -2.88 ...,  2.88  2.94  3.  ]
     ..., 
     [-3.   -2.94 -2.88 ...,  2.88  2.94  3.  ]
     [-3.   -2.94 -2.88 ...,  2.88  2.94  3.  ]
     [-3.   -2.94 -2.88 ...,  2.88  2.94  3.  ]]
    [[-3.   -3.   -3.   ..., -3.   -3.   -3.  ]
     [-2.94 -2.94 -2.94 ..., -2.94 -2.94 -2.94]
     [-2.88 -2.88 -2.88 ..., -2.88 -2.88 -2.88]
     ..., 
     [ 2.88  2.88  2.88 ...,  2.88  2.88  2.88]
     [ 2.94  2.94  2.94 ...,  2.94  2.94  2.94]
     [ 3.    3.    3.   ...,  3.    3.    3.  ]]
    

    cmaps = [('Perceptually Uniform Sequential',
              ['viridis', 'inferno', 'plasma', 'magma']),
             ('Sequential', ['Blues', 'BuGn', 'BuPu',
                             'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd',
                             'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu',
                             'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd']),
             ('Sequential (2)', ['afmhot', 'autumn', 'bone', 'cool',
                                 'copper', 'gist_heat', 'gray', 'hot',
                                 'pink', 'spring', 'summer', 'winter']),
             ('Diverging', ['BrBG', 'bwr', 'coolwarm', 'PiYG', 'PRGn', 'PuOr',
                            'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn', 'Spectral',
                            'seismic']),
             ('Qualitative', ['Accent', 'Dark2', 'Paired', 'Pastel1',
                              'Pastel2', 'Set1', 'Set2', 'Set3']),
             ('Miscellaneous', ['gist_earth', 'terrain', 'ocean', 'gist_stern',
                                'brg', 'CMRmap', 'cubehelix',
                                'gnuplot', 'gnuplot2', 'gist_ncar',
                                'nipy_spectral', 'jet', 'rainbow',
                                'gist_rainbow', 'hsv', 'flag', 'prism'])]
     
  • 相关阅读:
    C++之queue模板类
    Longest Valid Parentheses
    Longest Substring Without Repeating Characters
    Subsets,Subsets II
    Unique Paths
    Letter Combinations of a Phone Number
    Restore IP Addresses
    [string]Roman to Integer,Integer to Roman
    [string]Reverse Words in a String
    [string]Regular Expression Matching
  • 原文地址:https://www.cnblogs.com/AsuraDong/p/7413087.html
Copyright © 2020-2023  润新知