• HDU 6063 17多校3 RXD and math(暴力打表题)


    Problem Description
    RXD is a good mathematician.
    One day he wants to calculate:
    i=1nkμ2(i)×nki−−−√

    output the answer module 109+7.
    1n,k1018
    μ(n)=1(n=1)

    μ(n)=(1)k(n=p1p2pk)

    μ(n)=0(otherwise)

    p1,p2,p3pk are different prime numbers
     
    Input
    There are several test cases, please keep reading until EOF.
    There are exact 10000 cases.
    For each test case, there are 2 numbers n,k.
     
    Output
    For each test case, output "Case #x: y", which means the test case number and the answer.
     
    Sample Input
    10 10
     
    Sample Output
    Case #1: 999999937

     打表大法好啊!打表之后发现就是求n^k%MOD

    记得对n先做预处理取模,否则快速幂也救不了啊

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cmath>
     4 #include<cstring>
     5 using namespace std;
     6 const long long MOD=1e9+7;
     7 
     8 long long quickmod(long long a,long long b,long long m) 
     9 { 
    10     long long ans = 1; 
    11     while(b)//用一个循环从右到左遍历b的所有二进制位 
    12     { 
    13         if(b&1)//判断此时b[i]的二进制位是否为1 
    14         { 
    15             ans = (ans*a)%m;//乘到结果上,这里a是a^(2^i)%m 
    16             b--;//把该为变0 
    17         } 
    18         b/=2; 
    19         a = a*a%m; 
    20     } 
    21     return ans; 
    22 } 
    23 
    24 int main()
    25 {
    26     long long n,k;
    27     int t=1;
    28     while(~scanf("%lld%lld",&n,&k))
    29     {
    30         printf("Case #%d: ",t++);
    31         n%=MOD;
    32         printf("%lld
    ",quickmod(n,k,MOD));
    33     }
    34     return 0;
    35 }

    打表程序如下:

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cmath>
     4 using namespace std;
     5 
     6 #define MOD 1000000000+7
     7 
     8 bool panduan (long long num)
     9 {
    10     long long i;
    11     for(i=2;i<=sqrt((double)num)+1;i++)
    12     {
    13         if(num%(i*i)==0)
    14             return true;
    15     }
    16     return false;
    17 }
    18 
    19 int main()
    20 {
    21     int n,k;
    22     long long num;
    23     long long res=0;
    24     for(int n=1;n<=10;n++)
    25     for(int k=1;k<=10;k++)
    26     {
    27         res=0;
    28         num=pow((double)n,(double)k);
    29         for(int i=1;i<=num;i++)
    30         {
    31             if(!panduan(i))
    32                 res+=(long long)(sqrt((double)(num/i)));
    33             res%=MOD;
    34         }
    35         printf("%d %d %lld
    ",n,k,res);
    36     }
    37     return 0;
    38 }

     每一行三个数字分别表示n,k,res

  • 相关阅读:
    echarts 柱状图
    echarts 双y轴渐变色进度条
    echarts 折线图
    算法系列一:本质以及特征
    导致薪水低的九大行为表现
    Tomcat使用shutdown.sh无法关闭
    定时将上月的数据导入到Oracle中,并更新指定的列
    定时抛转数据 crontab
    微服务主要模块
    tk.mybatis 调用oracle,生成ID
  • 原文地址:https://www.cnblogs.com/Annetree/p/7272428.html
Copyright © 2020-2023  润新知