870 斐波那契进阶
题目链接:https://buaacoding.cn/problem/870/index
思路
通过读题就可以发现这不是一般的求斐波那契数列,所以用数组存下所有的答案是不现实的。题目也明确点明此题可以利用矩阵的计算解题。
如果你稍微百度一下你会了解到快速矩阵幂的概念。
分析
快速矩阵幂算法是一种简单的具有典型意义的连续为离散算法,同学们一定要掌握其思想,而不是从网上copy一份板子就用。
时间复杂度:(O(lgN));
考点:简单的快速矩阵幂;
坑点:一边计算一边取模才不会找过范围。
参考代码
//
// Created by AlvinZH on 2017/10/1.
// Copyright (c) AlvinZH. All rights reserved.
//
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string>
#include <bitset>
#include <utility>
#include <functional>
#include <iomanip>
#include <sstream>
#include <ctime>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MaxSize 100005
#define MOD 10007
typedef long long LL;
using namespace std;
const int N = 2;
struct Matrix {
int mat[N][N];
Matrix() {}
Matrix operator * (const Matrix& b) const {
Matrix result;
memset(result.mat, 0, sizeof(result.mat));
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
for (int k = 0; k < N; ++k) {
result.mat[i][j] = (result.mat[i][j] + this->mat[i][k] * b.mat[k][j]) % MOD;
}
}
}
return result;
}
};
Matrix MatPow(Matrix base, int n)
{
Matrix result;
memset(result.mat, 0, sizeof(result.mat));
for (int i = 0; i < N; ++i) {
result.mat[i][i] = 1;
}
while (n > 0)
{
if(n & 1) result = result * base;
base = base * base;
n >>= 1;
}
return result;
}
int main()
{
Matrix base;
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
base.mat[i][j] = 1;
}
}
base.mat[1][1] = 0;
int n;
while (~scanf("%d", &n))
{
Matrix ans = MatPow(base, n);
printf("%d
", ans.mat[0][1]);
}
}