要点
- 括号序列平衡度即树深度的性质
- 相当于中序遍历,则两点间最浅的地方即是LCA的性质
- 线段树维护(d(a) + d(c) - 2*d(lca(a,c))),一层层剥,思考维护这个量需要什么,结果维护一大堆。
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 2e5 + 5;
int n, q;
char s[maxn];
class SegmentTree {
public:
#define ls (p << 1)
#define rs (p << 1 | 1)
struct node {
int l, r;
int depth;//its root is s[l]
int ans;//d(a) + d(c) - 2d(lca(a, c))
int lmax;//d(a) - 2d(lca(a, c))
int rmax;//d(c) - 2d(lca(a, c))
int mxd;//max depth
int mnd;//min depth
void init(int val) {
mxd = mnd = depth = val;
lmax = rmax = -val;
ans = 0;
}
}t[maxn * 3];
void Push_up(int p) {
// b = lca(a, c), a <= b <= c
t[p].depth = t[ls].depth + t[rs].depth;
t[p].mxd = max(t[ls].mxd, t[rs].mxd + t[ls].depth);
t[p].mnd = min(t[ls].mnd, t[rs].mnd + t[ls].depth);
t[p].lmax = max(t[ls].lmax, t[rs].lmax - t[ls].depth);//a, b both in l or r
t[p].lmax = max(t[p].lmax, t[ls].mxd - 2 * (t[rs].mnd + t[ls].depth));//a in l and b in r
t[p].rmax = max(t[ls].rmax, t[rs].rmax - t[ls].depth);//b, c both in l or r
t[p].rmax = max(t[p].rmax, t[rs].mxd + t[ls].depth - 2 * t[ls].mnd);//b int l and c in r
t[p].ans = max(t[ls].ans, t[rs].ans);//a,b,c all in l or r
t[p].ans = max(t[p].ans, max(t[ls].lmax + t[rs].mxd + t[ls].depth, t[ls].mxd + t[rs].rmax - t[ls].depth));//ab in l, c in r || a in l, bc in r
}
void Build(int l, int r, int p) {
t[p].l = l, t[p].r = r;
if (l == r) {
t[p].init(s[l] == '(' ? 1 : -1);
return;
}
int mid = (l + r) >> 1;
Build(l, mid, ls);
Build(mid + 1, r, rs);
Push_up(p);
}
void Modify(int l, int r, int p) {
if (t[p].l == t[p].r) {
t[p].init(s[l] == '(' ? 1 : -1);
return;
}
int mid = (t[p].l + t[p].r) >> 1;
if (l <= mid) Modify(l, r, ls);
if (mid < r) Modify(l, r, rs);
Push_up(p);
}
}tree;
int main() {
scanf("%d %d", &n, &q);
scanf("%s", s + 1);
n = (n - 1) << 1;
tree.Build(1, n, 1);
printf("%d
", tree.t[1].ans);
for (int a, b; q; q--) {
scanf("%d %d", &a, &b);
if (s[a] != s[b]) {
swap(s[a], s[b]);
tree.Modify(a, a, 1);
tree.Modify(b, b, 1);
}
printf("%d
", tree.t[1].ans);
}
}