• HIVE中join、semi join、outer join


    补充说明

    left outer join where is not null与left semi join的联系与区别:两者均可实现exists in操作,不同的是,前者允许右表的字段在select或where子句中引用,而后者不允许。

    除了left outer join,Hive QL中还有right outer join,其功能与前者相当,只不过左表和右表的角色刚好相反。

    另外,Hive QL中没有left join、right join、full join以及right semi join等操作。

    举例子:

    hive> select * from zz0; 
    111111 
    222222 
    888888 
    hive> select * from zz1; 
    111111 
    333333 
    444444 
    888888

    hive> select * from zz0 join zz1 on zz0.uid = zz1.uid; 
    111111  111111 
    888888  888888 
    hive> select * from zz0 left outer join zz1 on zz0.uid = zz1.uid; 
    111111  111111 
    222222  NULL 
    888888  888888 
    hive> select * from zz0 right outer join zz1 on zz0.uid = zz1.uid; 
    NULL 
    111111  111111 
    NULL    333333 
    NULL    444444 
    888888  888888 
    hive> select * from zz0 full outer join zz1 on zz0.uid = zz1.uid; 
    NULL 
    111111  111111 
    222222  NULL 
    NULL    333333 
    NULL    444444 
    888888  888888 
    hive> select * from zz0 left semi join zz1 on zz0.uid = zz1.uid; 
    111111  111111 
    888888  888888

    写好Hive 程序的五个提示

    使用Hive可以高效而又快速地编写复杂的MapReduce查询逻辑。但是某些情况下,因为不熟悉数据特性,或没有遵循Hive的优化约定,Hive计算任务会变得非常低效,甚至无法得到结果。一个”好”的Hive程序仍然需要对Hive运行机制有深入的了解。

    有一些大家比较熟悉的优化约定包括:Join中需要将大表写在靠右的位置;尽量使用UDF而不是transfrom……诸如此类。下面讨论5个性能和逻辑相关的问题,帮助你写出更好的Hive程序。

    全排序

    Hive的排序关键字是SORT BY,它有意区别于传统数据库的ORDER BY也是为了强调两者的区别–SORT BY只能在单机范围内排序。考虑以下表定义:

    CREATE TABLE if not exists t_order(
    
    id int, -- 订单编号
    
    sale_id int, -- 销售ID
    
    customer_id int, -- 客户ID
    
    product _id int, -- 产品ID
    
    amount int -- 数量
    
    ) PARTITIONED BY (ds STRING);

    在表中查询所有销售记录,并按照销售ID和数量排序:

    set mapred.reduce.tasks=2;
    
    Select sale_id, amount from t_order
    
    Sort by sale_id, amount;

    这一查询可能得到非期望的排序。指定的2个reducer分发到的数据可能是(各自排序):

    Reducer1:

    Sale_id | amount
    
    0 | 100
    
    1 | 30
    
    1 | 50
    
    2 | 20

    Reducer2:

    Sale_id | amount
    
    0 | 110
    
    0 | 120
    
    3 | 50
    
    4 | 20

    因为上述查询没有reduce key,hive会生成随机数作为reduce key。这样的话输入记录也随机地被分发到不同reducer机器上去了。为了保证reducer之间没有重复的sale_id记录,可以使用DISTRIBUTE BY关键字指定分发key为sale_id。改造后的HQL如下:

    set mapred.reduce.tasks=2;
    
    Select sale_id, amount from t_order
    
    Distribute by sale_id
    
    Sort by sale_id, amount;

    这样能够保证查询的销售记录集合中,销售ID对应的数量是正确排序的,但是销售ID不能正确排序,原因是hive使用hadoop默认的HashPartitioner分发数据。

    这就涉及到一个全排序的问题。解决的办法无外乎两种:

    1.) 不分发数据,使用单个reducer:

    set mapred.reduce.tasks=1;

    这一方法的缺陷在于reduce端成为了性能瓶颈,而且在数据量大的情况下一般都无法得到结果。但是实践中这仍然是最常用的方法,原因是通常排序的查询是为了得到排名靠前的若干结果,因此可以用limit子句大大减少数据量。使用limit n后,传输到reduce端(单机)的数据记录数就减少到n*(map个数)。

    2.) 修改Partitioner,这种方法可以做到全排序。这里可以使用Hadoop自带的TotalOrderPartitioner(来自于Yahoo!的TeraSort项目),这是一个为了支持跨reducer分发有序数据开发的Partitioner,它需要一个SequenceFile格式的文件指定分发的数据区间。如果我们已经生成了这一文件(存储在/tmp/range_key_list,分成100个reducer),可以将上述查询改写为

    set mapred.reduce.tasks=100;
    
    set hive.mapred.partitioner=org.apache.hadoop.mapred.lib.TotalOrderPartitioner;
    
    set total.order.partitioner.path=/tmp/ range_key_list;
    
    Select sale_id, amount from t_order
    
    Cluster by sale_id
    
    Sort by amount;

    有很多种方法生成这一区间文件(例如hadoop自带的o.a.h.mapreduce.lib.partition.InputSampler工具)。这里介绍用Hive生成的方法,例如有一个按id有序的t_sale表:

    CREATE TABLE if not exists t_sale (
    
    id int,
    
    name string,
    
    loc string
    
    );

    则生成按sale_id分发的区间文件的方法是:

    create external table range_keys(sale_id int)
    
    row format serde
    
    'org.apache.hadoop.hive.serde2.binarysortable.BinarySortableSerDe'
    
    stored as
    
    inputformat
    
    'org.apache.hadoop.mapred.TextInputFormat'
    
    outputformat
    
    'org.apache.hadoop.hive.ql.io.HiveNullValueSequenceFileOutputFormat'
    
    location '/tmp/range_key_list';
    
     
    
    insert overwrite table range_keys
    
    select distinct sale_id
    
    from source t_sale sampletable(BUCKET 100 OUT OF 100 ON rand()) s
    
    sort by sale_id;

    生成的文件(/tmp/range_key_list目录下)可以让TotalOrderPartitioner按sale_id有序地分发reduce处理的数据。区间文件需要考虑的主要问题是数据分发的均衡性,这有赖于对数据深入的理解。

    怎样做笛卡尔积?

    Hive设定为严格模式(hive.mapred.mode=strict)时,不允许在HQL语句中出现笛卡尔积,这实际说明了Hive对笛卡尔积支持较弱。因为找不到Join key,Hive只能使用1个reducer来完成笛卡尔积。

    当然也可以用上面说的limit的办法来减少某个表参与join的数据量,但对于需要笛卡尔积语义的需求来说,经常是一个大表和一个小表的Join操作,结果仍然很大(以至于无法用单机处理),这时MapJoin才是最好的解决办法。

    MapJoin,顾名思义,会在Map端完成Join操作。这需要将Join操作的一个或多个表完全读入内存。

    MapJoin的用法是在查询/子查询的SELECT关键字后面添加/*+ MAPJOIN(tablelist) */提示优化器转化为MapJoin(目前Hive的优化器不能自动优化MapJoin)。其中tablelist可以是一个表,或以逗号连接的表的列表。tablelist中的表将会读入内存,应该将小表写在这里。

    PS:有用户说MapJoin在子查询中可能出现未知BUG。在大表和小表做笛卡尔积时,规避笛卡尔积的方法是,给Join添加一个Join key,原理很简单:将小表扩充一列join key,并将小表的条目复制数倍,join key各不相同;将大表扩充一列join key为随机数。

    怎样写exist in子句?

    Hive不支持where子句中的子查询,SQL常用的exist in子句需要改写。这一改写相对简单。考虑以下SQL查询语句:

    SELECT a.key, a.value
    
    FROM a
    
    WHERE a.key in
    
    (SELECT b.key
    
    FROM B);

    可以改写为

    SELECT a.key, a.value
    
    FROM a LEFT OUTER JOIN b ON (a.key = b.key)
    
    WHERE b.key <> NULL;

    一个更高效的实现是利用left semi join改写为:

    SELECT a.key, a.val
    
    FROM a LEFT SEMI JOIN b on (a.key = b.key);

    left semi join是0.5.0以上版本的特性。

    Hive怎样决定reducer个数?

    Hadoop MapReduce程序中,reducer个数的设定极大影响执行效率,这使得Hive怎样决定reducer个数成为一个关键问题。遗憾的是Hive的估计机制很弱,不指定reducer个数的情况下,Hive会猜测确定一个reducer个数,基于以下两个设定:

    1. hive.exec.reducers.bytes.per.reducer(默认为1000^3)

    2. hive.exec.reducers.max(默认为999)

    计算reducer数的公式很简单:

    N=min(参数2,总输入数据量/参数1)

    通常情况下,有必要手动指定reducer个数。考虑到map阶段的输出数据量通常会比输入有大幅减少,因此即使不设定reducer个数,重设参数2还是必要的。依据Hadoop的经验,可以将参数2设定为0.95*(集群中TaskTracker个数)。

    合并MapReduce操作

    Multi-group by

    Multi-group by是Hive的一个非常好的特性,它使得Hive中利用中间结果变得非常方便。例如,

    FROM (SELECT a.status, b.school, b.gender
    
    FROM status_updates a JOIN profiles b
    
    ON (a.userid = b.userid and
    
    a.ds='2009-03-20' )
    
    ) subq1
    
    INSERT OVERWRITE TABLE gender_summary
    
    PARTITION(ds='2009-03-20')
    
    SELECT subq1.gender, COUNT(1) GROUP BY subq1.gender
    
    INSERT OVERWRITE TABLE school_summary
    
    PARTITION(ds='2009-03-20')
    
    SELECT subq1.school, COUNT(1) GROUP BY subq1.school
    

    上述查询语句使用了Multi-group by特性连续group by了2次数据,使用不同的group by key。这一特性可以减少一次MapReduce操作。

    Multi-distinct

    Multi-distinct是淘宝开发的另一个multi-xxx特性,使用Multi-distinct可以在同一查询/子查询中使用多个distinct,这同样减少了多次MapReduce操作。

    摘自:http://www.alidata.org/archives/622

  • 相关阅读:
    sql server实现主从复制
    sql server 常用语法
    超像素、语义分割、实例分割、全景分割 傻傻分不清?
    什么是多模态机器学习?
    SLAM领域牛人、牛实验室、牛研究成果梳理
    从零开始一起学习SLAM | 给点云加个滤网
    原来CNN是这样提取图像特征的。。。
    从零开始一起学习SLAM | 你好,点云
    2019年度【计算机视觉&机器学习&人工智能】国际重要会议汇总
    从零开始一起学习SLAM | 神奇的单应矩阵
  • 原文地址:https://www.cnblogs.com/Allen-rg/p/9288000.html
Copyright © 2020-2023  润新知