• [Sdoi2010] 地精部落


    F. 地精部落

    题目描述

    传说很久以前,大地上居住着一种神秘的生物:地精。 地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数。 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。 地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆 不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。 地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮 流担当瞭望工作,以确保在第一时间得知外敌的入侵。 地精们希望这N 段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足 这个条件的整座山脉才可能有地精居住。 现在你希望知道,长度为N 的可能有地精居住的山脉有多少种。两座山脉A 和B不同当且仅当存在一个 i,使得 Ai≠Bi。由于这个数目可能很大,你只对它 除以P的余数感兴趣。

    输入格式

    仅含一行,两个正整数 N, P。

    输出格式

    仅含一行,一个非负整数,表示你所求的答案对P取余 之后的结果。

    样例

    样例输入

    4 7

    样例输出

    3

    数据范围与提示

    image
    对于 20%的数据,满足 N≤10;
    对于 40%的数据,满足 N≤18;
    对于 70%的数据,满足 N≤550;
    对于 100%的数据,满足 3≤N≤4200,P≤10^99​​

    大佬们都说这道题是水题,然而我貌似搞了一天,其实开始就想出来了一个n3的算法,但是肯定会T,我以为是个组合数的题,就去想其他解法了,然而那个n3再改一下就是正解了……

    题解:

    f[i][j][0]表示考虑前i段,前i个数,第i段为j且为山谷,f[i][j][1]第i段为j且为山峰。那么f[i][j][0]=∑f[i-1][k][1];(j<k<i)。

    这样是n3怎么优化呢?可以发现f[i][j][0]与f[i][i-j+1][1]是一一对应的(相当于是把原来的山峰变成了山谷,山谷变成了山峰),不明白可以去手膜样例。所以f[i][j][0]=∑f[i-1][i-k+1][0](j+1<=k<i)=∑f[i-1][k][0](1<=k<=i-j);

    其实后面的0就完全可以去掉了:f[i][j]=∑f[i-1][k](1<=k<=i-j),那么可以用一个变量辅助dp,就可以变为n2了。

    1 for(int i=2;i<=n;i++)
    2 {
    3     tem=0;
    4     for(int k=1;k<=i-1;k++)   
    5         tem=(tem+f[i-1][k])%p;
    6     for(int j=1;j<=i;j++)
    7         f[i][j]=tem,tem=((tem-f[i-1][i-j])%p+p)%p;
    8 }

    最后答案为(∑f[n][i])*2,因为最后一个点为山峰和山谷的方案数是一样的,乘2即可。

    #include<iostream>
    #include<cstdio>
    #define LL long long
    using namespace std;
    LL n,p;
    LL f[4210][4210];
    signed main()
    {
        scanf("%lld%lld",&n,&p);
        LL tem=0,ans=0;
        f[1][1]=1;
        for(int i=2;i<=n;i++)
        {
            tem=0;
            for(int k=1;k<=i-1;k++)   
                tem=(tem+f[i-1][k])%p;
            for(int j=1;j<=i;j++)
                f[i][j]=tem,tem=((tem-f[i-1][i-j])%p+p)%p;
        }
    	for(int i=1;i<=n;i++)ans=(ans+f[n][i])%p;
    	ans=(ans+ans)%p;
    	cout<<ans<<endl;
    }
    

     但是这样在bzoj上A不了,要用滚动数组;

    #include<iostream>
    #include<cstdio>
    #define LL long long
    using namespace std;
    LL n,p,tem=0,ans=0;;
    LL f[2][4210];
    signed main()
    {
        scanf("%lld%lld",&n,&p);
        f[1][1]=1;
        for(int i=2;i<=n;i++)
        {
            tem=0;
            for(int k=1;k<=i-1;k++)   
                tem=(tem+f[(i-1)%2][k])%p;
            for(int j=1;j<=i;j++)
                f[i%2][j]=tem,tem=((tem-f[(i-1)%2][i-j])%p+p)%p;
    		for(int k=0;k<=n;k++)
    			f[(i-1)%2][k]=0;
        }
    	for(int i=1;i<=n;i++)ans=(ans+f[n%2][i])%p;ans=(ans+ans)%p;
    	cout<<ans<<endl;
    }
    
    波澜前,面不惊。
  • 相关阅读:
    viewpaper
    mfc ui 3 swf
    mfc ui3
    mfc ui2
    mfc ui库
    将Cocos2dX渲染到MFC窗口上
    MFC 框架技术简单研讨
    不可忽略的数据库缓存重建
    google bookmarket api
    android 加载大图片
  • 原文地址:https://www.cnblogs.com/Al-Ca/p/11120516.html
Copyright © 2020-2023  润新知