• 2019 Multi-University Training Contest 5


    permutation 2

    Problem Description

    You are given three positive integers N,x,y.
    Please calculate how many permutations of 1N satisfies the following conditions (We denote the i-th number of a permutation by pi):

    1. p1=x

    2. pN=y

    3. for all 1i<N|pipi+1|2

    Input

    The first line contains one integer T denoting the number of tests.

    For each test, there is one line containing three integers N,x,y.

    1T5000

    2N105

    1x<yN

    Output

    For each test, output one integer in a single line indicating the answer modulo 998244353.

    Sample Input

    3
    4 1 4
    4 2 4
    100000 514 51144

    Sample Output

    2
    1
    253604680

    找规律

    #include <bits/stdc++.h>
     
    using namespace std;
    typedef long long ll;
    ll f[100210],n,x,y;
    const ll mod=998244353;
    int main()
    {
        f[1]=1;
        f[2]=1;
        f[3]=1;
        f[4]=2;
        f[5]=3;
        for (ll i=6; i<=100020; i++)
        {
            f[i]=(f[i-2]+f[i-3]+f[i-4])%mod;
        }
        int T;
        scanf("%d",&T);
        while (T--)
        {
            scanf("%lld%lld%lld",&n,&x,&y);
            if (x==1&&y==2)
            {
                printf("1
    ");
                continue;
            }
            if (x==n-1&&y==n)
            {
                printf("1
    ");
                continue;
            }
            if (y-x==1)
            {
                printf("0
    ");
                continue;
            }
            if (y==n)
            {
                   if (x==1) printf("%lld
    ",f[y-x+1]); else printf("%lld
    ",f[y-x]);
            }
            else
            {
                if (x==1)
                {
                    printf("%lld
    ",f[y-x]);
                }
                else
                {
                    printf("%lld
    ",f[y-x-1]);
                }
            }
        }
    }
    

    permutation 1

    Problem Description

    A sequence of length n is called a permutation if and only if it's composed of the first n positive integers and each number appears exactly once.

    Here we define the "difference sequence" of a permutation p1,p2,,pn as p2p1,p3p2,,pnpn1. In other words, the length of the difference sequence is n1 and the i-th term is pi+1pi

    Now, you are given two integers N,K. Please find the permutation with length N such that the difference sequence of which is the K-th lexicographically smallest among all difference sequences of all permutations of length N.

    Input

    The first line contains one integer T indicating that there are T tests.

    Each test consists of two integers N,K in a single line.

    1T40

    2N20

    1Kmin(104,N!)

    Output

    For each test, please output N integers in a single line. Those N integers represent a permutation of 1 to N, and its difference sequence is the K-th lexicographically smallest.

    Sample Input

    7
    3 1
    3 2
    3 3
    3 4
    3 5
    3 6
    20 10000

    Sample Output

    3 1 2
    3 2 1
    2 1 3
    2 3 1
    1 2 3
    1 3 2
    20 1 2 3 4 5 6 7 8 9 10 11 13 19 18 14 16 15 17 12
    

    equation

    Problem Description

    You are given two integers N,C and two integer sequences a and b of length N. The sequences are indexed from 1 to N.

    Please solve the following equation for x:
     
    , where |v| means the absolute value of v.

    Input

    The first line contains an integer T indicating there are T tests. Each test consists of N+1 lines. The first line contains two integers N,C. The i-th line of following Nlines consists of two integers ai,bi

    1T50

    1N105

    1ai1000

    1000bi1000

    1C109

    * only 5 tests with N larger than 1000

    Output

    For each test, output one line.
    If there are an infinite number of solutions, this line consists only one integer 1.
    Otherwise, this line first comes with an integer m indicating the number of solutions, then you must print m fractions from the smallest to the largest indicating all possible answers. (It can be proved that all solutions can be written as fractions). The fraction should be in the form of "a/b" where a must be an integer, b must be a positive integer, and gcd(abs(a),b)=1. If the answer is 0, you should output "0/1".

    Sample Input

    4
    2 3
    1 2
    1 -1
    3 3
    2 1
    2 2
    2 3
    2 1
    3 5
    4 -1
    3 2
    1 -1
    1 -2
    1 -3

     Sample Output

    -1
    2 -3/2 -1/2
    0
    1 2/1

    n个绝对值方程把数轴分成n+1个部分,从左到右每个方程都变一次号

    #include <bits/stdc++.h>
     
    using namespace std;
    const int maxn=200100;
    typedef long long ll;
    ll a,b,n,c,ka,kb,k,ff,dd;
    set<pair<ll,ll> >s;
    struct node
    {
        ll a,b;
    } d[maxn],ans[maxn];
     
    bool cmp(node a,node b)
    {
        return a.b*b.a<b.b*a.a;
    }
     
    int main() {
        int T;
        scanf("%d", &T);
        while (T--) {
            s.clear();
            memset(d,0, sizeof(d));
            k = ff = ka = kb = 0;
            scanf("%lld%lld", &n, &c);
            for (int i = 1; i <= n; i++) {
                scanf("%lld%lld", &d[i].a, &d[i].b);
                ka -= d[i].a;
                kb -= d[i].b;
                d[i].b = d[i].b * (-1);
            }
            sort(d + 1, d + n + 1, cmp);
            for (int i = 0; i <= n; i++) {
                ka += 2 * d[i].a;
                kb += 2 * (-1) * d[i].b;
                if (ka == 0 && kb == c) {
                    ff = 1;
                    break;
                }
                b = c - kb;
                a = ka;
                if (a < 0) {
                    a *= -1;
                    b *= -1;
                }
                dd = __gcd(a, abs(b));
                if (b * d[i + 1].a <= d[i + 1].b * a && d[i].a * b >= d[i].b * a) {
                    k++;
                    ans[k].a = a / dd;
                    ans[k].b = b / dd;
                }
            }
            if (ff) {
                printf("-1
    ");
                continue;
            }
            for (int i = 1; i <= k; i++) {
                s.insert(make_pair(ans[i].a, ans[i].b));
            }
            k = 0;
            int len = s.size();
            if (len == 0) {
                printf("%d
    ", len);
                continue;
            }
            printf("%d", len);
            for (set<pair<ll, ll> >::iterator it = s.begin(); it != s.end(); it++) {
                k++;
                ans[k].a = it->first;
                ans[k].b = it->second;
            }
            sort(ans + 1, ans + k + 1, cmp);
            for (int i = 1; i <= k; i++) {
                printf(" %lld/%lld", ans[i].b, ans[i].a);
            }
            printf("
    ");
        }
    }
    

    string matching

    Problem Description

    String matching is a common type of problem in computer science. One string matching problem is as following:

    Given a string s[0len1], please calculate the length of the longest common prefix of s[ilen1] and s[0len1] for each i>0.

    I believe everyone can do it by brute force.
    The pseudo code of the brute force approach is as the following:

     We are wondering, for any given string, what is the number of compare operations invoked if we use the above algorithm. Please tell us the answer before we attempt to run this algorithm.

    Input

    The first line contains an integer T, denoting the number of test cases.
    Each test case contains one string in a line consisting of printable ASCII characters except space.

    1T30

    * string length 106 for every string

    Output

    For each test, print an integer in one line indicating the number of compare operations invoked if we run the algorithm in the statement against the input string.

    Sample Input

    3
    _Happy_New_Year_
    ywwyww
    zjczzzjczjczzzjc

    Sample Output

    17
    7
    32
    
    #include <bits/stdc++.h>
     
    using namespace std;
     
    const int maxn=1001000;
    typedef long long ll;
    ll ans,next1[maxn],len;
    char s[maxn];
     
    void pre_ekmp(char x[],ll m,ll next[]) {
        next[0] = m;
        ll j = 0;
        while (j + 1 < m && x[j] == x[j + 1]) {
            j++;
        }
        next[1] = j;
        ll k = 1;
        for (ll i = 2; i < m; i++) {
            ll p = next[k] + k - 1;
            ll L = next[i - k];
            if (i + L < p + 1) {
                next[i] = L;
            } else {
                j = max(0ll, p - i + 1);
                while (i + j < m && x[i + j] == x[j]) {
                    j++;
                }
                next[i] = j;
                k = i;
            }
        }
    }
     
    int main(){
        int T;
        scanf("%d",&T);
        while (T--){
            ans=0;
            scanf("%s",s);
            len=strlen(s);
            pre_ekmp(s,len,next1);
            for (ll i=1;i<len;i++){
                if (i+next1[i]<len) ans+=next1[i]+1;else ans+=next1[i];
            }
            printf("%lld
    ",ans);
        }
    }

    permutation 1

     

    #include<bits/stdc++.h>
    
    using namespace std;
    
    struct node{
        int tmp[30];
    }a[100010];
    int n,k,ans[30];
    bool cmp1(node a,node b){
        for (int i=1;i<n;i++){
            if (a.tmp[i+1]-a.tmp[i]==b.tmp[i+1]-b.tmp[i]){
                continue;
            }
            return a.tmp[i+1]-a.tmp[i]<b.tmp[i+1]-b.tmp[i];
        }
    }
    
    bool cmp2(node a,node b){
        a.tmp[0]=n-8;
        b.tmp[0]=n-8;
        for (int i=0;i<8;i++){
            if (a.tmp[i+1]-a.tmp[i]==b.tmp[i+1]-b.tmp[i]){
                continue;
            }
            return a.tmp[i+1]-a.tmp[i]<b.tmp[i+1]-b.tmp[i];
        }
    }
    
    int tmpans[9],tot;
    int vis[30];
    
    void dfs1(int x){
        if (x==n+1){
            tot++;
            for (int i=1;i<=n;i++){
                a[tot].tmp[i]=ans[i];
            }
            return;
        }
        for (int i=1;i<=n;i++){
            if (!vis[i]){
                ans[x]=i;
                vis[i]=1;
                dfs1(x+1);
                vis[i]=0;
            }
        }
    }
    
    void dfs2(int x){
        if (x==9){
            tot++;
            for (int i=1;i<=8;i++){
                a[tot].tmp[i]=ans[i];
            }
            return;
        }
        for (int i=n-8;i<=n-1;i++){
            if (!vis[i]){
                ans[x]=i;
                vis[i]=1;
                dfs2(x+1);
                vis[i]=0;
            }
        }
    }
    
    int main(){
        int T;
        scanf("%d",&T);
        while (T--){
            scanf("%d%d",&n,&k);
            memset(vis,0,sizeof(vis));
            if (n>8){
                tot=0;
                printf("%d ",n);
                for (int i=1;i<n-8;i++){
                    printf("%d ",i);
                }
                dfs2(1);
                sort(a+1,a+tot+1,cmp2);
                for (int i=1;i<8;i++){
                    printf("%d ",a[k].tmp[i]);
                }
                printf("%d
    ",a[k].tmp[8]);
            }else{
                tot=0;
                dfs1(1);
                sort(a+1,a+tot+1,cmp1);
                for (int i=1;i<n;i++){
                    printf("%d ",a[k].tmp[i]);
                }
                printf("%d
    ",a[k].tmp[n]);
            }
        }
    }
    

    fraction

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    ll p,x,y,a;
    void ggcd(ll pa,ll pb,ll qa,ll qb,ll &x,ll &y){
        ll z=(pa+pb)/pb;
        if (z<=qa/qb){
            x=z;
            y=1;
            return;
        }
        pa-=(z-1)*pb;
        qa-=(z-1)*qb;
        ggcd(qb,qa,pb,pa,y,x);
        x+=(z-1)*y;
    }
    int main(){
        int T;
        scanf("%d",&T);
        while (T--){
            scanf("%lld%lld",&p,&a);
            ggcd(p,a,p,a-1,x,y);
            printf("%lld/%lld
    ",x*a-p*y,x);
        }
    }

    three arrays

    discrete logarithm problem

    line symmetric

    find hidden array

  • 相关阅读:
    【.NET Core项目实战统一认证平台】第三章 网关篇数据库存储配置(1)
    【.NET Core项目实战统一认证平台】第六章 网关篇自定义客户端授权
    【.NET Core项目实战统一认证平台】第四章 网关篇数据库存储配置(2)
    软件工程实践2019第二次作业
    SDN上机第二次作业
    软件工程2019第三次作业
    起落落落落的前端程序员体验【软件工程第5次作业】
    SDN初体验(软件定义网络实验一)
    软件工程实践2019第一次作业
    原型设计展示【与莫多的初次合作】
  • 原文地址:https://www.cnblogs.com/Accpted/p/11306736.html
Copyright © 2020-2023  润新知