【链接】 我是链接,点我呀:)
【题意】
【题解】
定义dis[i][j]表示到达i这个点。 用掉了j次去除边的机会的最短路。 dis[1][0]= 0; 在写松弛条件的时候。 如果用了去除边的机会。 就把机会+1再更新最短路就好。 用spfa会超时。 写个dijkstra+优先队列优化就ok 在dis[n][0..k]中找最小值就好。【代码】
#include <bits/stdc++.h>
#define LL long long
#define ms(a,b) memset(a,b,sizeof a)
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
const LL mod=1000000007;
LL powmod(LL a,LL b) {LL res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
LL gcd(LL a,LL b) { return b?gcd(b,a%b):a;}
// head
using namespace std;
const int N = 1e5;
const int K = 10;
const int M = 2e5;
struct abc
{
int en,w,nex;
}bian[M+10];
int n,m,k,fir[N+10],totm;
LL dis[N+10][K+5];
multiset< pair<LL,pair<int,int> > > myset;
multiset< pair<LL,pair<int,int> > >::iterator it;
int main(){
while (n>0){
n/=2;
n++;
n--;
n/=2;
}
ios::sync_with_stdio(0),cin.tie(0);
int T;
cin >> T;
while (T--){
memset(fir,255,sizeof fir);
totm = 0;
cin >> n >> m >> k;
rep1(i,1,m){
int x,y,z;
cin >> x >> y >> z;
totm++;
bian[totm].nex = fir[x];
fir[x] = totm;
bian[totm].en = y;
bian[totm].w = z;
}
memset(dis,255,sizeof dis);
dis[1][0] = 0;
myset.insert(make_pair(0,make_pair(1,0)));
while (!myset.empty()){
pair<LL,pair<int,int> > temp = (*myset.begin());
myset.erase(myset.begin());
int x = temp.second.first,times = temp.second.second;
for (int i = fir[x];i!=-1;i = bian[i].nex)
{
int y = bian[i].en;LL w = bian[i].w;
if (dis[y][times]==-1 || dis[y][times]>dis[x][times]+w){
if (dis[y][times]!=-1){
it = myset.find(make_pair(dis[y][times],make_pair(y,times)));
myset.erase(it);
}
dis[y][times] = dis[x][times]+w;
myset.insert(make_pair(dis[y][times],make_pair(y,times)));
}
if (times+1<=k && ( dis[y][times+1]==-1 || dis[y][times+1]>dis[x][times]))
{
if (dis[y][times+1]!=-1)
{
it = myset.find(make_pair(dis[y][times+1],make_pair(y,times+1)));
myset.erase(it);
}
dis[y][times+1] = dis[x][times];
myset.insert(make_pair(dis[y][times+1],make_pair(y,times+1)));
}
}
}
LL mi = dis[n][0];
for (int i = 1;i <= k;i++)
if (dis[n][i]!=-1){
mi = min(mi,dis[n][i]);
}
cout<<mi<<endl;
}
return 0;
}