• 【37.68%】【hdu 5918】Sequence I


    Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 706 Accepted Submission(s): 266

    Problem Description
    Mr. Frog has two sequences a1,a2,⋯,an and b1,b2,⋯,bm and a number p. He wants to know the number of positions q such that sequence b1,b2,⋯,bm is exactly the sequence aq,aq+p,aq+2p,⋯,aq+(m−1)p where q+(m−1)p≤n and q≥1.

    Input
    The first line contains only one integer T≤100, which indicates the number of test cases.

    Each test case contains three lines.

    The first line contains three space-separated integers 1≤n≤106,1≤m≤106 and 1≤p≤106.

    The second line contains n integers a1,a2,⋯,an(1≤ai≤109).

    the third line contains m integers b1,b2,⋯,bm(1≤bi≤109).

    Output
    For each test case, output one line “Case #x: y”, where x is the case number (starting from 1) and y is the number of valid q’s.

    Sample Input
    2
    6 3 1
    1 2 3 1 2 3
    1 2 3
    6 3 2
    1 3 2 2 3 1
    1 2 3

    Sample Output
    Case #1: 2
    Case #2: 1

    Source
    2016中国大学生程序设计竞赛(长春)-重现赛

    【题解】

    意思是让你在
    a1,a1+p,a1+2p,a1+3p…
    a2,a2+p,a2+2p,a2 + 3p..
    a3,a3+p,a3+2p,a3 +3p

    ap,ap+p,ap+2p,ap+3p..
    (a右边的东西都是下标;)
    这p个序列里面找b数组的匹配数目;
    用vector类处理出这个p个数列就好。
    剩下的用KMP算法解决。
    找完一个匹配之后,j==m。
    这个时候让j= f[j];
    就能继续找匹配了。
    记住就好。不然每次都想好烦。

    #include <cstdio>
    #include <iostream>
    #include <vector>
    
    const int MAXN = 2e6;
    const int MAXM = 2e6;
    
    using namespace std;
    
    int p;
    vector <int> a[MAXN];
    int b[MAXM];
    int f[MAXM],ans,n,m;
    
    void input(int &r)
    {
        int t = getchar();
        while (!isdigit(t)) t = getchar();
        r = 0;
        while (isdigit(t)) r = r * 10+t-'0', t = getchar();
    }
    
    int main()
    {
        //freopen("F:\rush.txt", "r", stdin);
        int t;
        input(t);
        for (int q = 1; q <= t; q++)
        {
            for (int i = 0; i <= 1000000; i++)//a[0]也要clear!
                a[i].clear();
            ans = 0;
            input(n); input(m); input(p);
            for (int i = 1; i <= n; i++)
            {
                int x;
                input(x);
                a[(i%p)].push_back(x);
            }
            for (int j = 0; j <= m - 1; j++)
                input(b[j]);
            f[0] = 0; f[1] = 0;
            for (int i = 1; i <= m - 1; i++)//获取失配函数,b数组下表是从0开始的。
            {
                int j = f[i];
                while (j && b[j] != b[i]) j = f[j];
                f[i + 1] = b[j] == b[i] ? j + 1 : 0;
            }
            for (int i = 0; i <= p - 1; i++)//给p个数列找匹配数目
            {
                int j = 0, len = a[i].size();
                for (int k = 0; k <= len - 1; k++)
                {
                    while (j && a[i][k] != b[j]) j = f[j];
                    if (a[i][k] == b[j])
                        j++;
                    if (j == m)
                    {
                        ans++;
                        j = f[j];
                    }
                }
            }
            printf("Case #%d: %d
    ", q, ans);
        }
        return 0;
    }
  • 相关阅读:
    前端发版后清理浏览器缓存处理
    CF235A 【LCM Challenge】
    CF39H 【Multiplication Table】
    CF171C 【A Piece of Cake】
    CF450A 【Jzzhu and Children】
    CF387B 【George and Round】
    火柴棒等式
    P1062 数列 题解
    P1045 麦森数
    (原创)最短路径那些事-1
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7632169.html
Copyright © 2020-2023  润新知