【题目链接】:http://hihocoder.com/problemset/problem/1287
【题意】
【题解】
取的底数必须是小于等于n-1的;
那12个数字能通过2^64以内的所有数字;
【Number Of WA】
0
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const LL test[12] = {2,3,5,7,11,13,17,19,23,29,31,37};
const double pi = acos(-1.0);
const int N = 110;
int t;
LL multi(LL a,LL b,LL p)
{
LL ret = 0;
while (b)
{
if (b&1) ret = (ret+a)%p;
a = (a<<1)%p;
b>>=1;
}
return ret;
}
LL ksm(LL a,LL b,LL p)
{
LL t = 1;
while (b)
{
if (b&1) t = multi(t,a,p);
a = multi(a,a,p);
b>>=1;
}
return t;
}
bool miller_rabin(LL n)
{
if (n==2) return true;
if (n<2 || ((n&1)==0)) return false;
LL m = (n-1);
int k = 0;
while ((m&1)==0)
{
k++;
m>>=1;
}
rep1(i,0,11)
{
LL a = test[i];
if (a>n-1) break;
LL t = ksm(a,m,n);
rep1(i,1,k)
{
LL y = multi(t,t,n);
if (y==1 && t!=1 && t!=n-1) return false;
t = y;
}
if (t!=1) return false;
}
return true;
}
int main()
{
ios::sync_with_stdio(false),cin.tie(0);//scanf,puts,printf not use
cin >> t;
while (t--)
{
LL a;
cin >> a;
if (miller_rabin(a))
cout <<"Yes"<<endl;
else
cout <<"No"<<endl;
}
return 0;
}