题意:
有甲乙两条狗分别沿着一条折线奔跑,已知它们同时从各自的起点出发,同时到达各自的终点。求整个过程中两条狗的最大距离Max与最小距离Min的差值。
分析:
假设甲乙的路线都是一条线段的简单情况。运动是相对的,我们假定甲不动,乙相对甲的运动也是匀速直线运动。所以就将问题转化成了点到直线的最小和最大距离。
甲或乙每到达一个拐点所对应的时刻称作“关键点”,那么没两个关键点之间的运动都可看做上面分析的简单情况。我们只要及时更新甲乙的位置即可。
LenA和LenB分别是两条路线的总长,因为运动时间相同,不妨设二者的运动速度为LenA和LenB,这样总时间为1
1 //#define LOCAL 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <cmath> 6 using namespace std; 7 8 struct Point 9 { 10 double x, y; 11 Point(double x=0, double y=0) :x(x),y(y) {} 12 }; 13 typedef Point Vector; 14 Point read_point(void) 15 { 16 double x, y; 17 scanf("%lf%lf", &x, &y); 18 return Point(x, y); 19 } 20 const double EPS = 1e-8; 21 Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } 22 Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } 23 Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } 24 Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 25 bool operator < (const Point& a, const Point& b) 26 { return a.x < b.x || (a.x == b.x && a.y < b.y); } 27 int dcmp(double x) 28 { if(fabs(x) < EPS) return 0; else return x < 0 ? -1 : 1; } 29 bool operator == (const Point& a, const Point& b) 30 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } 31 double Dot(Vector A, Vector B) 32 { return A.x*B.x + A.y*B.y; } 33 double Length(Vector A) { return sqrt(Dot(A, A)); } 34 35 double Cross(Vector A, Vector B) 36 { return A.x*B.y - A.y*B.x; } 37 double DistanceToSegment(Point P, Point A, Point B) 38 { 39 if(A == B) return Length(P - A); 40 Vector v1 = B - A, v2 = P - A, v3 = P - B; 41 if(dcmp(Dot(v1, v2)) < 0) return Length(v2); 42 else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); 43 else return fabs(Cross(v1, v2)) / Length(v1); 44 } 45 const int maxn = 60; 46 Point P[maxn], Q[maxn]; 47 double Min, Max; 48 49 void update(Point P, Point A, Point B) 50 { 51 Min = min(Min, DistanceToSegment(P, A, B)); 52 Max = max(Max, Length(P-A)); 53 Max = max(Max, Length(P-B)); 54 } 55 56 int main(void) 57 { 58 #ifdef LOCAL 59 freopen("11796in.txt", "r", stdin); 60 #endif 61 62 int T, A, B; 63 scanf("%d", &T); 64 for(int kase = 1; kase <= T; ++kase) 65 { 66 int A, B; 67 scanf("%d%d", &A, &B); 68 for(int i = 0; i < A; ++i) P[i] = read_point(); 69 for(int i = 0; i < B; ++i) Q[i] = read_point(); 70 71 double LenA = 0.0, LenB = 0.0; 72 for(int i = 0; i < A-1; ++i) LenA += Length(P[i+1] - P[i]); 73 for(int i = 0; i < B-1; ++i) LenB += Length(Q[i+1] - Q[i]); 74 75 int Sa = 0, Sb = 0; //甲乙当前端点的编号 76 Point Pa = P[0], Pb = Q[0]; 77 Min = 1e9, Max = -1e9; 78 while(Sa < A-1 && Sb < B-1) 79 { 80 double La = Length(P[Sa+1] - Pa); //甲乙分别到下一拐点的距离 81 double Lb = Length(Q[Sb+1] - Pb); 82 double T = min(La / LenA, Lb / LenB); 83 Vector Va = (P[Sa+1] - Pa) / La * T * LenA; 84 Vector Vb = (Q[Sb+1] - Pb) / Lb * T * LenB; 85 update(Pa, Pb, Pb + Vb - Va); 86 Pa = Pa + Va; 87 Pb = Pb + Vb; 88 if(Pa == P[Sa+1]) Sa++; 89 if(Pb == Q[Sb+1]) Sb++; 90 } 91 92 printf("Case %d: %.0lf ", kase, Max - Min); 93 } 94 return 0; 95 }