• UVa 11796 Dog Distance


    题意:

    有甲乙两条狗分别沿着一条折线奔跑,已知它们同时从各自的起点出发,同时到达各自的终点。求整个过程中两条狗的最大距离Max与最小距离Min的差值。

    分析:

    假设甲乙的路线都是一条线段的简单情况。运动是相对的,我们假定甲不动,乙相对甲的运动也是匀速直线运动。所以就将问题转化成了点到直线的最小和最大距离。

    甲或乙每到达一个拐点所对应的时刻称作“关键点”,那么没两个关键点之间的运动都可看做上面分析的简单情况。我们只要及时更新甲乙的位置即可。

    LenA和LenB分别是两条路线的总长,因为运动时间相同,不妨设二者的运动速度为LenA和LenB,这样总时间为1

     1 //#define LOCAL
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <cmath>
     6 using namespace std;
     7 
     8 struct Point
     9 {
    10     double x, y;
    11     Point(double x=0, double y=0) :x(x),y(y) {}
    12 };
    13 typedef Point Vector;
    14 Point read_point(void)
    15 {
    16     double x, y;
    17     scanf("%lf%lf", &x, &y);
    18     return Point(x, y);
    19 }
    20 const double EPS = 1e-8;
    21 Vector operator + (Vector A, Vector B)    { return Vector(A.x + B.x, A.y + B.y); }
    22 Vector operator - (Vector A, Vector B)    { return Vector(A.x - B.x, A.y - B.y); }
    23 Vector operator * (Vector A, double p)    { return Vector(A.x*p, A.y*p); }
    24 Vector operator / (Vector A, double p)    { return Vector(A.x/p, A.y/p); }
    25 bool operator < (const Point& a, const Point& b)
    26 { return a.x < b.x || (a.x == b.x && a.y < b.y); }
    27 int dcmp(double x)
    28 { if(fabs(x) < EPS) return 0; else return x < 0 ? -1 : 1; }
    29 bool operator == (const Point& a, const Point& b)
    30 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
    31 double Dot(Vector A, Vector B)
    32 { return A.x*B.x + A.y*B.y; }
    33 double Length(Vector A)    { return sqrt(Dot(A, A)); }
    34 
    35 double Cross(Vector A, Vector B)
    36 { return A.x*B.y - A.y*B.x; }
    37 double DistanceToSegment(Point P, Point A, Point B)
    38 {
    39     if(A == B)    return Length(P - A);
    40     Vector v1 = B - A, v2 = P - A, v3 = P - B;
    41     if(dcmp(Dot(v1, v2)) < 0)    return Length(v2);
    42     else if(dcmp(Dot(v1, v3)) > 0)    return Length(v3);
    43     else return fabs(Cross(v1, v2)) / Length(v1);
    44 }
    45 const int maxn = 60;
    46 Point P[maxn], Q[maxn];
    47 double Min, Max;
    48 
    49 void update(Point P, Point A, Point B)
    50 {
    51     Min = min(Min, DistanceToSegment(P, A, B));
    52     Max = max(Max, Length(P-A));
    53     Max = max(Max, Length(P-B));
    54 }
    55 
    56 int main(void)
    57 {
    58     #ifdef    LOCAL
    59         freopen("11796in.txt", "r", stdin);
    60     #endif
    61     
    62     int T, A, B;
    63     scanf("%d", &T);
    64     for(int kase = 1; kase <= T; ++kase)
    65     {
    66         int A, B;
    67         scanf("%d%d", &A, &B);
    68         for(int i = 0; i < A; ++i)    P[i] = read_point();
    69         for(int i = 0; i < B; ++i)    Q[i] = read_point();
    70 
    71         double LenA = 0.0, LenB = 0.0;
    72         for(int i = 0; i < A-1; ++i)    LenA += Length(P[i+1] - P[i]);
    73         for(int i = 0; i < B-1; ++i)    LenB += Length(Q[i+1] - Q[i]);
    74 
    75         int Sa = 0, Sb = 0;        //甲乙当前端点的编号
    76         Point Pa = P[0], Pb = Q[0];
    77         Min = 1e9, Max = -1e9;
    78         while(Sa < A-1 && Sb < B-1)
    79         {
    80             double La = Length(P[Sa+1] - Pa);    //甲乙分别到下一拐点的距离
    81             double Lb = Length(Q[Sb+1] - Pb);
    82             double T = min(La / LenA, Lb / LenB);
    83             Vector Va = (P[Sa+1] - Pa) / La * T * LenA;
    84             Vector Vb = (Q[Sb+1] - Pb) / Lb * T * LenB;
    85             update(Pa, Pb, Pb + Vb - Va);
    86             Pa = Pa + Va;
    87             Pb = Pb + Vb;
    88             if(Pa == P[Sa+1])    Sa++;
    89             if(Pb == Q[Sb+1])    Sb++;
    90         }
    91 
    92         printf("Case %d: %.0lf
    ", kase, Max - Min);
    93     }
    94     return 0;
    95 }
    代码君
  • 相关阅读:
    让Mootools的语法结构像Jquery那样
    從此不再談jquery,马上忘掉他开始学Mootools
    解决Firefox的Sync不能同步的问题
    用php做模糊而又精确的查找
    Jquery弹出层插件和拖拽插件的结合使用范例
    Jquery优化效率 提升性能解决方案
    该死的百度部落格又做了什么改动?
    想念
    硬盘出现“I/O设备错误的解决方法
    jquery插件 弹出层的效果实现代码
  • 原文地址:https://www.cnblogs.com/AOQNRMGYXLMV/p/4023078.html
Copyright © 2020-2023  润新知