迭代器和生成器
1.迭代器
我们之前⼀直在⽤可迭代对象进⾏迭代操作. 那么到底什么是可迭代对象.⾸先我们先回顾⼀下⽬前我们所熟知的可迭代对象有哪些:
str, list, tuple, dict, set. 那为什么我们可以称他们为可迭代对象呢? 因为他们都遵循了可 迭代协议. 什么是可迭代协议. ⾸先我们先看⼀段错误代码:
注意看报错信息中有这样⼀句话. 'int' object is not iterable . 翻译过来就是整数类型对象 是不可迭代的. iterable表⽰可迭代的. 表⽰可迭代协议. 那么如何进⾏验证你的数据类型是否 符合可迭代协议. 我们可以通过dir函数来查看类中定义好的所有⽅法.
s = "我的哈哈哈"
print(dir(s)) # 可以打印对象中的⽅法和函数
print(dir(str)) # 也可以打印类中声明的⽅法和函数
在打印结果中,找寻这个__iter__,如果能找到,那么这个类就是可迭代对象
我们发现这⼏个可以进⾏for循环的东⻄都有__iter__函数, 包括range也有. 可以⾃⼰试⼀ 下. 综上. 我们可以确定. 如果对象中有__iter__函数. 那么我们认为这个对象遵守了可迭代协议. 就可以进⾏迭代. 这⾥的__iter__是帮助我们获取到对象的迭代器. 我们使⽤__next__()来获取 到⼀个迭代器中的元素. 那么我们之前讲的for的⼯作原理到底是什么? 继续看代码
我们可以把要迭代的内容当成⼦弹. 然后呢. 获取到迭代器__iter__(), 就把⼦弹都装在弹夹 中. 然后发射就是__next__()把每⼀个⼦弹(元素)打出来. 也就是说, for循环的时候. ⼀开始的 时候是__iter__()来获取迭代器. 后⾯每次获取元素都是通过__next__()来完成的. 当程序遇到 StopIteration将结束循环.
2.生成器
什么是⽣成器. ⽣成器实质就是迭代器.
在python中有三种⽅式来获取⽣成器:
1. 通过⽣成器函数
2. 通过各种推导式来实现⽣成器
3. 通过数据的转换也可以获取⽣成器
这里需要普及一下yield和return的区别:
1.如果函数中包含了yield, 这个函数是一个生成器函数, 执行函数的时候是:生成器
2.生成器执行__next__(),执行到下一个yield
3.yield的作用和return基本相同,但是,只负责返回生成器
4.return,结束函数