我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html
题目传送门:http://poj.org/problem?id=1958
题目要我们求四柱汉诺塔的步数最小值,将盘子数在(1)到(12)之间的全部求出来。
状态空间即为移动盘子对应的步数。
对于三柱汉诺塔,相信大家都非常熟悉了。我们假设三柱汉诺塔上有(n)个盘子,(f[n])表示将(n)个盘子移动到另一根柱子上的最小步数,那么显然:
(f[n]=f[n-1]*2+1)
就相当于你先把上面(n-1)个盘子先移到第二跟柱子上,然后用一步把最后的大盘子移动到第三根柱子上。再把那(n-1)个盘子移到第三根柱子上。
那么在题目要求的四柱条件下,状态就可以用三柱条件下的状态扩展得来。设(g[n])表示四柱条件下(n)个盘子从第一根全部移到另一根的最小步数。
那么显然:
(g[n]=min){(sum_{i=1}^{n-1}g[i]*2+g[n-i])}
就是枚举先将(i)个盘子移动到另一根柱子上,然后将剩下的盘子在三柱条件下移动到最后一根柱子上,再将先前的(i)根柱子移动到最后一根柱子上去。
时间复杂度:(O(n^2))
空间复杂度:(O(n))
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n=12;
int f[13],g[13];
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
int main() {
memset(g,63,sizeof(g));
g[1]=1;
for(int i=1;i<=n;i++)
f[i]=f[i-1]*2+1;
for(int i=2;i<=n;i++)
for(int j=1;j<i;j++)
g[i]=min(g[i],g[j]*2+f[i-j]);
for(int i=1;i<=n;i++)
printf("%d
",g[i]);
return 0;
}