还是loj的机子快啊。。。
普通的DP不难想到,设F[i][zt]为带上根玩出zt的方案数,G[i][zt]为子树中的方案数,后面是可以用FWT优化的
主要是复习了下动态DP
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; const int _=1e2; const int maxn=3e4+_; const int fbin=maxn<<2; const int maxm=128+2; const int mod=1e4+7; inline int ad(int x,int y){return (x>=mod-y)?(x-mod+y):x+y;} inline int re(int x,int y){return (x<y)?(x-y+mod):x-y;} inline int read() { int x=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();} return x; } inline void write(int d) { if(d>=10)write(d/10); putchar(d%10+'0'); } int m; struct poly { int a[maxm]; poly(){} void FWT(int op) { for(int i=1;i<m;i<<=1) for(int j=0;j<m;j+=(i<<1)) for(int k=0;k<i;k++) { int a1=a[j+k],a2=a[j+k+i]; a[j+k]=ad(a1,a2); a[j+k+i]=re(a1,a2); if(op==-1) { a[j+k]=a[j+k]*(mod/2+1)%mod; a[j+k+i]=a[j+k+i]*(mod/2+1)%mod; } } } poly(int x){memset(a,0,sizeof(a));a[x]=1;FWT(1);} friend poly operator +(poly u,poly v){for(int i=0;i<m;i++)u.a[i]=ad(u.a[i],v.a[i]); return u;} friend poly operator -(poly u,poly v){for(int i=0;i<m;i++)u.a[i]=re(u.a[i],v.a[i]); return u;} friend poly operator *(poly u,poly v){for(int i=0;i<m;i++)u.a[i]=u.a[i]*v.a[i]%mod; return u;} }o; struct Matrix { poly a,b,c,d; Matrix(){} Matrix(poly f,poly g){a=b=c=f;d=f+g;} Matrix(poly A,poly B,poly C,poly D){a=A,b=B,c=C,d=D;} friend Matrix operator +(Matrix u,Matrix v){return Matrix(u.a*v.a,u.a*v.b+u.b,u.c*v.a+v.c,u.c*v.b+u.d+v.d);} }; //----------------------------------------def------------------------------------------------------------ namespace FASEG//每个点的每个孩子的F+1 { struct trnode { int lc,rc;poly p; }tr[10*maxn];int trlen,rt[maxn]; void update(int now) { int lc=tr[now].lc,rc=tr[now].rc; if(lc&&rc)tr[now].p=tr[lc].p*tr[rc].p; else if(lc)tr[now].p=tr[lc].p; else if(rc)tr[now].p=tr[rc].p; } void insert(int &now,int l,int r,int p,poly u) { if(now==0)now=++trlen; if(l==r){tr[now].p=u;return ;} int mid=(l+r)/2; if(p<=mid)insert(tr[now].lc,l,mid,p,u); else insert(tr[now].rc,mid+1,r,p,u); update(now); } } namespace LINESEG//第i个位置放的是i的重儿子转移到i的转移矩阵 { #define lc (now<<1) #define rc (now<<1|1) #define mid ((ql+qr)/2) Matrix tr[fbin]; void update(int now){tr[now]=tr[rc]+tr[lc];} void change(int now,int ql,int qr,int p,Matrix m) { if(ql==qr){tr[now]=m;return ;} if(p<=mid)change(lc,ql,mid,p,m); else change(rc,mid+1,qr,p,m); update(now); } Matrix getmatrix(int now,int ql,int qr,int l,int r) { if(ql==l&&qr==r)return tr[now]; if(r<=mid) return getmatrix(lc,ql,mid,l,r); else if(mid+1<=l)return getmatrix(rc,mid+1,qr,l,r); else return getmatrix(rc,mid+1,qr,mid+1,r)+getmatrix(lc,ql,mid,l,mid); } #undef lc #undef rc #undef mid } //---------------------------------------data struct---------------------------------------------------- int n; struct node { int x,y,next; }a[2*maxn];int len,last[maxn]; void ins(int x,int y) { len++; a[len].x=x;a[len].y=y; a[len].next=last[x];last[x]=len; } int fa[maxn],son[maxn],tot[maxn],dep[maxn]; void pre_tree_node(int x) { tot[x]=1; for(int k=last[x];k;k=a[k].next) { int y=a[k].y; if(y!=fa[x]) { fa[y]=x; dep[y]=dep[x]+1; pre_tree_node(y); if(son[x]==0||tot[son[x]]<tot[y])son[x]=y; tot[x]+=tot[y]; } } } int z,ys[maxn],top[maxn],bot[maxn]; void pre_tree_edge(int x,int tp) { ys[x]=++z;top[x]=tp; if(son[x]!=0)pre_tree_edge(son[x],tp),bot[x]=bot[son[x]]; else bot[x]=x; for(int k=last[x];k;k=a[k].next) { int y=a[k].y; if(y!=fa[x]&&y!=son[x]) pre_tree_edge(y,y); } } //-------------------------------------------cop---------------------------------------------------- int w[maxn],cnt[maxn],wch[maxn];//有多少轻孩子,爸爸的第几个轻孩子 poly F[maxn],G[maxn],g[maxn];//包括x的方案数,总方案数,只有轻儿子的总方案数 void treeDP(int x) { F[x]=poly(w[x]); cnt[x]=1; for(int k=last[x];k;k=a[k].next) { int y=a[k].y; if(fa[x]!=y) { treeDP(y); F[x]=F[x]*(F[y]+o); G[x]=G[x]+G[y]; if(son[x]!=y) { wch[y]=++cnt[x]; g[x]=g[x]+G[y]; } } } G[x]=G[x]+F[x]; using namespace FASEG; insert(rt[x],1,cnt[x],1,poly(w[x])); for(int k=last[x];k;k=a[k].next) { int y=a[k].y; if(fa[x]!=y&&son[x]!=y) insert(rt[x],1,cnt[x],wch[y],F[y]+o); } } //-------------------------------------------pre------------------------------------------------ void query(int zt) { poly u=G[1];u.FWT(-1); write(u.a[zt]),putchar(' '); } Matrix ma; void change(int x,int zt) { w[x]=zt; using namespace FASEG; insert(rt[x],1,cnt[x],1,poly(w[x])); int tx=top[x]; while(x!=0) { LINESEG::change(1,1,n,ys[x],Matrix(tr[rt[x]].p,g[x])); if(fa[tx]!=0) { ma=LINESEG::getmatrix(1,1,n,ys[tx],ys[bot[tx]]); insert(rt[fa[tx]],1,cnt[fa[tx]],wch[tx],ma.c+o); g[fa[tx]]=g[fa[tx]]-G[tx]; G[tx]=ma.d; g[fa[tx]]=g[fa[tx]]+G[tx]; } else G[tx]=LINESEG::getmatrix(1,1,n,ys[tx],ys[bot[tx]]).d; x=fa[tx];tx=top[x]; } } char ss[10]; int main() { freopen("xor.in","r",stdin); freopen("xor.out","w",stdout); int x,y; n=read(),m=read(); for(int i=1;i<=n;i++)w[i]=read(); for(int i=1;i<n;i++) { x=read(),y=read(); ins(x,y),ins(y,x); } pre_tree_node(1); z=0,pre_tree_edge(1,1); for(int i=0;i<m;i++)o.a[i]=1; treeDP(1); for(int i=1;i<=n;i++) LINESEG::change(1,1,n,ys[i],Matrix(FASEG::tr[FASEG::rt[i]].p,g[i])); int Q; Q=read(); while(Q--) { char ch=getchar(); while(ch!='C'&&ch!='Q')ch=getchar(); bool bk=ch=='C'; while(ch!='e'&&ch!='y')ch=getchar(); if(!bk) x=read(),query(x); else { x=read(),y=read(),change(x,y); /* poly u=LINESEG::getmatrix(1,1,n,ys[1],ys[bot[1]]).d; u.FWT(-1); for(int i=0;i<=3;i++) printf("%d ",u.a[i]); puts(""); */ } } return 0; }