• AI大视觉(八) | Yolov3 如何调整先验框进行解码?


      本文来自公众号“AI大道理”

    解码就是将预测得到的调整参数应用于先验框,从而得到预测框。

    ​解码原理

    YOLOv3借鉴RPN网络使用anchor boxes来预测边界框相对先验框的offsets。

    YOLOv3预测边界框中心点相对于对应cell左上角位置的相对偏移值,使用sigmoid函数处理偏移值,这样预测的偏移值在(0,1)范围内(每个cell的尺度看做1),把边界框中心点约束在当前cell中。

    根据边界框预测的4个offsetstx,ty,tw,th,可以按如下公式计算出边界框实际位置和大小:

    (cx,xy)为cell的左上角坐标,在计算时每个cell的尺度为1,所以当前cell的左上角坐标为((1,1)。

    由于sigmoid函数的处理,边界框的中心位置会约束在当前cell内部,防止偏移过多。

    而pw和ph是先验框的宽度与长度,它们的值也是相对于特征图大小的,在特征图中每个cell的长和宽均为1。

    这里记特征图的大小为(W,H),可以将边界框相对于整张图片的位置和大小计算出来(4个值均在0和1之间)

    将上面的4个值分别乘以图片的宽度和长度(像素点值)就可以得到边界框的最终位置和大小了,这就是YOLOv3边界框的解码原理。

    ​解码过程

    (1)生成先验框

    以13*13这个特征层为例,一共有13*13个网格,每个网格有3个先验框。

    生成的先验框的中心是网格的左上角。

    先验框的宽高可以自己设定或者通过K-means聚类得到。

    (2)缩放先验框

    解码是在特征层上进行的,所以需要缩放先验框至特征层大小的比例,计算出先验框在特征层上对应的框高。

    (3)调整先验框

    解码每次只能对一个特征层进行解码,因此需要进行3次循环解码。

    yolov3网络的预测结果得到一维的参数,这些参数包含了宽高的调整参数、中心的调整参数、置信度、类别概率等。

     

    先验框的中心位置的调整参数,sigmoid使得每个物体由左上角的网格点进行预测,因为0-1的话中心只能往右下角偏移。

    得到这些调整参数利用解码原理中的公式作用到先验框,对先验框进行调整,获得最终的预测框。

    (4)得到预测框

    此时获得的scaled_anchors大小是相对于特征层的。

    先验框的调整是在特征图上进行调整的,然后再放大到原图上得到最终的预测框。

     

    ​总结

    Yolov3 的解码就是利用预测结果的调整参数,从而调整先验框得到预测框的过程。

    调整是在特征图上进行的,因此需要先根据特征图大小缩放先验框,然后利用公式作用到先验框上,实现先验框的调整。

    再将调整后的先验框放大到原图上,得到预测框。

    这就是整个解码过程了。

      

     ——————

    浅谈则止,细致入微AI大道理

    扫描下方“AI大道理”,选择“关注”公众号

    —————————————————————

    ​     

    —————————————————————

    投稿吧   | 留言吧


    萍水相逢逢萍水,浮萍之水水浮萍!
  • 相关阅读:
    z-index
    点击按钮跳转带指定的位置
    导航-角
    弹出框
    控制叠加风格
    Python学习三
    玩转HTTP
    http-关于application/x-www-form-urlencoded等字符编码的解释说明
    Python学习二
    git merge 和 git rebase
  • 原文地址:https://www.cnblogs.com/AIBigTruth/p/14919473.html
Copyright © 2020-2023  润新知