(1)np.random.randn()函数
语法:
np.random.randn(d0,d1,d2……dn)
1)当函数括号内没有参数时,则返回一个浮点数;
2)当函数括号内有一个参数时,则返回秩为1的数组,不能表示向量和矩阵;
3)当函数括号内有两个及以上参数时,则返回对应维度的数组,能表示向量或矩阵;
4)np.random.standard_normal()函数与np.random.randn()类似,但是np.random.standard_normal()的输入参数为元组(tuple).
5)np.random.randn()的输入通常为整数,但是如果为浮点数,则会自动直接截断转换为整数。
作用:
通过本函数可以返回一个或一组服从标准正态分布的随机样本值。
特点:
标准正态分布是以0为均数、以1为标准差的正态分布,记为N(0,1)。对应的正态分布曲线如下所示,即
标准正态分布曲线下面积分布规律是:
在-1.96~+1.96范围内曲线下的面积等于0.9500(即取值在这个范围的概率为95%),在-2.58~+2.58范围内曲线下面积为0.9900(即取值在这个范围的概率为99%).
因此,由 np.random.randn()函数所产生的随机样本基本上取值主要在-1.96~+1.96之间,当然也不排除存在较大值的情形,只是概率较小而已。在神经网络构建中,权重参数W通常采用该函数进行初始化,当然需要注意的是,通常会在生成的矩阵后面乘以小数,比如0.01,目的是为了提高梯度下降算法的收敛速度。
W = np.random.randn(2,2)*0.01
import numpy as np
arr1 = np.random.randn(2,4)
print(arr1)
print('******************************************************************')
arr2 = np.random.rand(2,4)
print(arr2)
1
2
3
4
5
6
7
结果:[[-1.03021018 0.5197033 0.52117459 -0.70102661]
[ 0.98268569 1.21940697 -1.095241 -0.38161758]]
******************************************************************
[[ 0.19947349 0.05282713 0.56704222 0.45479972]
[ 0.28827103 0.1643551 0.30486786 0.56386943]](2) np.random.rand()函数
语法:
np.random.rand(d0,d1,d2……dn)
注:使用方法与np.random.randn()函数相同
作用:
通过本函数可以返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1。
应用:在深度学习的Dropout正则化方法中,可以用于生成dropout随机向量(dl),例如(keep_prob表示保留神经元的比例):dl = np.random.rand(al.shape[0],al.shape[1]) < keep_probimport numpy as np
arr1 = np.random.randn(2,4)
print(arr1)
print('******************************************************************')
arr2 = np.random.rand(2,4)
print(arr2)
1
2
3
4
5
6
7
结果:[[-1.03021018 0.5197033 0.52117459 -0.70102661]
[ 0.98268569 1.21940697 -1.095241 -0.38161758]]
******************************************************************
[[ 0.19947349 0.05282713 0.56704222 0.45479972]
[ 0.28827103 0.1643551 0.30486786 0.56386943]]
---------------------
作者:木子木泗
来源:CSDN
原文:https://blog.csdn.net/u010758410/article/details/71799142
版权声明:本文为博主原创文章,转载请附上博文链接!(3) np.random.randint()函数
语法:
numpy.random.randint(low, high=None, size=None, dtype=’l’)
输入:
low—–为最小值
high—-为最大值
size—–为数组维度大小
dtype—为数据类型,默认的数据类型是np.int。
返回值:
返回随机整数或整型数组,范围区间为[low,high),包含low,不包含high;
high没有填写时,默认生成随机数的范围是[0,low)在使用Python进行数据处理时,往往需要用到大量的随机数据,那如何构造这么多数据呢?Python的第三方库numpy库中提供了random函数来实现这个功能。
本文将根据官方文档以及其他博友的博客一起来谈论常见的random函数以及使用
官方文档首先说下numpy.random.seed()与numpy.random.RandomState()这两个在数据处理中比较常用的函数,两者实现的作用是一样的,都是使每次随机生成数一样,具体可见下图
1.numpy.random.rand()
官方文档中给出的用法是:numpy.random.rand(d0,d1,…dn)
以给定的形状创建一个数组,并在数组中加入在[0,1]之间均匀分布的随机样本。
用法及实现:
2.numpy.random.randn()
官方文档中给出的用法是:numpy.random.rand(d0,d1,…dn)
以给定的形状创建一个数组,数组元素来符合标准正态分布N(0,1)
若要获得一般正态分布则可用sigma * np.random.randn(…) + mu进行表示
用法及实现:
3.numpy.random.randint()
官方文档中给出的用法是:numpy.random.randint(low,high=None,size=None,dtype)
生成在半开半闭区间[low,high)上离散均匀分布的整数值;若high=None,则取值区间变为[0,low)
用法及实现
high=None的情形
high≠None
4.numpy.random.random_integers()
官方文档中给出的用法是:
numpy.random.random_integers(low,high=None,size=None)
生成闭区间[low,high]上离散均匀分布的整数值;若high=None,则取值区间变为[1,low]
用法及实现
high=None的情形
high≠None的情形
此外,若要将【a,b】区间分成N等分,也可以用此函数实现
a+(b-a)*(numpy.random.random_integers(N)-1)/(N-1)5.numpy.random_sanmple()
官方文档中给出的用法是:
numpy.random.random_sample(size=None)
以给定形状返回[0,1)之间的随机浮点数
用法及实现
其他函数,numpy.random.random() ;numpy.random.ranf()
numpy.random.sample()用法及实现都与它相同6.numpy.random.choice()
官方文档中给出的用法:
numpy.random.choice(a,size=None,replace=True,p=None)
若a为数组,则从a中选取元素;若a为单个int类型数,则选取range(a)中的数
replace是bool类型,为True,则选取的元素会出现重复;反之不会出现重复
p为数组,里面存放选到每个数的可能性,即概率
用法及实现
以上就是关于random函数的几种用法,欢迎大家一起交流
---------------------
作者:冻鸡hhhh
来源:CSDN
原文:https://blog.csdn.net/m0_38061927/article/details/75335069
版权声明:本文为博主原创文章,转载请附上博文链接!