• Luogu P3803 【模板】多项式乘法 (FFT) (NTT)



    Luogu P3803 【模板】多项式乘法(FFT)

      

    FFT##

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    using namespace std;
    const int MAXN=5e6+5;
    const double Pi=acos(-1.0);
    struct complex
    {
        double x,y;
        complex (double xx=0,double yy=0) { x=xx,y=yy; }
    }a[MAXN],b[MAXN];
    complex operator + (complex a,complex b){return complex(a.x+b.x , a.y+b.y);}
    complex operator - (complex a,complex b){return complex(a.x-b.x , a.y-b.y);}
    complex operator * (complex a,complex b){return complex(a.x*b.x-a.y*b.y , a.x*b.y+a.y*b.x);} 
    int n,m,limit,len;
    int p[MAXN];
    inline int read()
    {
        int x=0,f=1; char ch=getchar(); 
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    void FFT(complex *A,int type)
    {
        for (int i=0; i<limit; i++) 
            if (i<p[i]) swap(A[i],A[p[i]]);
        for (int l=1; l<limit; l<<=1)
        {
            complex wn(cos(Pi/l),type*sin(Pi/l));
            for (int i=0; i<limit; i+=(l<<1))
            {
                complex w(1,0);
                for (int j=0; j<l; j++,w=w*wn)
                {
                    complex t=w*A[i+j+l];
                    A[i+j+l]=A[i+j]-t;
                    A[i+j]=A[i+j]+t;
                }
            }
        }
    }
    int main()
    {
        n=read(); m=read(); 
        for (int i=0; i<=n; i++) a[i].x=read();
        for (int i=0; i<=m; i++) b[i].x=read();
        
        limit=1;
        while (limit<n+m+1) limit<<=1,len++;
        for (int i=0; i<limit; i++)
            p[i]=(p[i>>1]>>1)|((i&1)<<(len-1));
        
        FFT(a,1); FFT(b,1);
        for (int i=0; i<limit; i++) a[i]=a[i]*b[i];
        FFT(a,-1);
        for (int i=0; i<=n+m; i++)
            printf("%d ",(int)(a[i].x/limit+0.5));
        printf("
    ");
        return 0;
    }
    

      
      
      

    NTT##

    #include<cstdio>
    #include<iostream>
    using namespace std;
    const int MAXN=5e6+5;
    const int mo=998244353;
    const int g=3;
    int n,m,limit,len,invn;
    int a[MAXN],b[MAXN],p[MAXN];
    inline int read()
    {
        int x=0,f=1; char ch=getchar(); 
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int power(int a,int b)
    {
        int res=1;
        while (b)
        {
            if (b&1) res=1ll*res*a%mo;
            a=1ll*a*a%mo;
            b>>=1;
        }
        return res;
    }
    void NTT(int *A,int type)
    {
        for (int i=0; i<limit; i++) 
            if (i<p[i]) swap(A[i],A[p[i]]);
        for (int l=1; l<limit; l<<=1)
        {
            int wn=power(g,(mo-1)/(l<<1));
            if (type==-1) wn=power(wn,mo-2);
            for (int i=0; i<limit; i+=(l<<1))
            {
                int w=1;
                for (int j=0; j<l; j++,w=1ll*w*wn%mo)
                {
                    int t=1ll*w*A[i+j+l]%mo;
                    A[i+j+l]=(A[i+j]-t+mo)%mo;
                    A[i+j]=(A[i+j]+t)%mo;
                }
            }
        }
    }
    int main()
    {
        n=read(); m=read(); 
        for (int i=0; i<=n; i++) a[i]=read();
        for (int i=0; i<=m; i++) b[i]=read();
        
        limit=1;
        while (limit<n+m+1) limit<<=1,len++;
        for (int i=0; i<limit; i++)
            p[i]=(p[i>>1]>>1)|((i&1)<<(len-1));
        
        NTT(a,1); NTT(b,1);
        for (int i=0; i<limit; i++) a[i]=1ll*a[i]*b[i]%mo;
        NTT(a,-1);
        invn=power(limit,mo-2);
        for (int i=0; i<=n+m; i++)
            printf("%lld ",1ll*a[i]*invn%mo);
        printf("
    ");
        return 0;
    }
    
  • 相关阅读:
    Consul 原理
    google ads api —— budget
    rabbitmq 启动报错 Kernel pid terminated
    maven 打依赖包命令
    【原创】Linux基础之supervisor
    Git 常用命令
    Thinkpad T14 AMD版无线网卡不可用
    在Windows10中安装解压版MySQL 8.X
    Git 分支管理参考模型
    Feign入门介绍
  • 原文地址:https://www.cnblogs.com/AGFghy/p/10234442.html
Copyright © 2020-2023  润新知