Luogu P3803 【模板】多项式乘法(FFT)
FFT##
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
const int MAXN=5e6+5;
const double Pi=acos(-1.0);
struct complex
{
double x,y;
complex (double xx=0,double yy=0) { x=xx,y=yy; }
}a[MAXN],b[MAXN];
complex operator + (complex a,complex b){return complex(a.x+b.x , a.y+b.y);}
complex operator - (complex a,complex b){return complex(a.x-b.x , a.y-b.y);}
complex operator * (complex a,complex b){return complex(a.x*b.x-a.y*b.y , a.x*b.y+a.y*b.x);}
int n,m,limit,len;
int p[MAXN];
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void FFT(complex *A,int type)
{
for (int i=0; i<limit; i++)
if (i<p[i]) swap(A[i],A[p[i]]);
for (int l=1; l<limit; l<<=1)
{
complex wn(cos(Pi/l),type*sin(Pi/l));
for (int i=0; i<limit; i+=(l<<1))
{
complex w(1,0);
for (int j=0; j<l; j++,w=w*wn)
{
complex t=w*A[i+j+l];
A[i+j+l]=A[i+j]-t;
A[i+j]=A[i+j]+t;
}
}
}
}
int main()
{
n=read(); m=read();
for (int i=0; i<=n; i++) a[i].x=read();
for (int i=0; i<=m; i++) b[i].x=read();
limit=1;
while (limit<n+m+1) limit<<=1,len++;
for (int i=0; i<limit; i++)
p[i]=(p[i>>1]>>1)|((i&1)<<(len-1));
FFT(a,1); FFT(b,1);
for (int i=0; i<limit; i++) a[i]=a[i]*b[i];
FFT(a,-1);
for (int i=0; i<=n+m; i++)
printf("%d ",(int)(a[i].x/limit+0.5));
printf("
");
return 0;
}
NTT##
#include<cstdio>
#include<iostream>
using namespace std;
const int MAXN=5e6+5;
const int mo=998244353;
const int g=3;
int n,m,limit,len,invn;
int a[MAXN],b[MAXN],p[MAXN];
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int power(int a,int b)
{
int res=1;
while (b)
{
if (b&1) res=1ll*res*a%mo;
a=1ll*a*a%mo;
b>>=1;
}
return res;
}
void NTT(int *A,int type)
{
for (int i=0; i<limit; i++)
if (i<p[i]) swap(A[i],A[p[i]]);
for (int l=1; l<limit; l<<=1)
{
int wn=power(g,(mo-1)/(l<<1));
if (type==-1) wn=power(wn,mo-2);
for (int i=0; i<limit; i+=(l<<1))
{
int w=1;
for (int j=0; j<l; j++,w=1ll*w*wn%mo)
{
int t=1ll*w*A[i+j+l]%mo;
A[i+j+l]=(A[i+j]-t+mo)%mo;
A[i+j]=(A[i+j]+t)%mo;
}
}
}
}
int main()
{
n=read(); m=read();
for (int i=0; i<=n; i++) a[i]=read();
for (int i=0; i<=m; i++) b[i]=read();
limit=1;
while (limit<n+m+1) limit<<=1,len++;
for (int i=0; i<limit; i++)
p[i]=(p[i>>1]>>1)|((i&1)<<(len-1));
NTT(a,1); NTT(b,1);
for (int i=0; i<limit; i++) a[i]=1ll*a[i]*b[i]%mo;
NTT(a,-1);
invn=power(limit,mo-2);
for (int i=0; i<=n+m; i++)
printf("%lld ",1ll*a[i]*invn%mo);
printf("
");
return 0;
}