Given a 2D integer matrix M representing the gray scale of an image, you need to design a smoother to make the gray scale of each cell becomes the average gray scale (rounding down) of all the 8 surrounding cells and itself. If a cell has less than 8 surrounding cells, then use as many as you can.
Example 1:
Input:
[[1,1,1],
[1,0,1],
[1,1,1]]
Output:
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
Explanation:
For the point (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the point (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0
Note:
- The value in the given matrix is in the range of [0, 255].
- The length and width of the given matrix are in the range of [1, 150].
class Solution {
public:
bool islegal(int i, int j){
if(i>=0&&i<row&&j>=0&&j<col)
return true;
else
return false;
}
vector<vector<int>> imageSmoother(vector<vector<int>>& M) {
vector<vector<int>> temp=M;
row=M.size(), col=M[0].size();
for(int i=0; i<row; i++)
for(int j=0; j<col; j++){
double cnt=0,sum=0;
for(int k=0;k<9;k++){
int r=i+dict[k][0], c=j+dict[k][1];
if(islegal(r,c)){
cnt++;
sum+=M[r][c];
}
}
temp[i][j]=floor(sum/cnt);
}
return temp;
}
private:
int row, col;
vector<vector<int>> dict={{1,0},{0,1},{1,1},{0,0},{-1,0},{0,-1},{-1,-1},{1,-1},{-1,1}};
};