• PostgreSQL 10分区表详解及性能测试报告


    作者简介:

    中国比较早的postgresql使用者,2001年就开始使用postgresql,自2003年底至2014年一直担任PGSQL中国社区论坛PostgreSQL的论坛板块版主、管理员,参与Postgresql讨论和发表专题文章7000多贴.拥有15年的erp设计,开发和实施经验,开源mrp系统PostMRP就是我的作品,该应用软件是一套基于Postgresql专业的制造业管理软件系统.目前任职于--中国第一物流控股有限公司/运力宝(北京)科技有限公司,为公司的研发部经理

    一、 测试环境

    操作系统:CentOS 6.4

    Postgresql版本号:10.0

    CPU:Intel(R) Xeon(R) CPU E5-2407 v2 @ 2.40GHz 4核心 4线程

    内存:32G

    硬盘:2T SAS 7200

    二、 编译安装PostgreSQL 10

    --编译安装及初始化

    [root@ad source]# git clone git://git.postgresql.org/git/postgresql.git
    [root@ad source]# cd postgresql
    [root@ad source]# ./configure --prefix=/usr/local/pgsql10
    [root@ad postgresql]# gmake -j 4
    [root@ad postgresql]# gmake install
    [root@ad postgresql]# su postgres
    [postgres@ad postgresql]# /usr/local/pgsql10/bin/initdb --no-locale -E utf8 -D /home/postgres/data10/ -U postgres

    --修改一些参数

    postgresql.conf
    
    listen_addresses = '*'
    port = 10000
    shared_buffers = 8096MB
    maintenance_work_mem = 512MB
    effective_cache_size = 30GB
    log_destination = 'csvlog'
    logging_collector = on
    log_directory = 'log'
    log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'
    log_file_mode = 0600
    log_checkpoints = off
    log_connections = off
    log_disconnections = off
    log_duration = off
    log_line_prefix = '%m %h %a %u %d %x [%p] '
    log_statement = 'none'
    log_timezone = 'PRC'
    track_activity_query_size = 4096
    max_wal_size = 32GB
    min_wal_size = 2GB
    checkpoint_completion_target = 0.5

    pg_hba.conf增加许可条目

    host    all             all             192.168.1.0/24          trust

    --启动服务

    [postgres@ad data10]$ /usr/local/pgsql10/bin/pg_ctl start -D /home/postgres/data10/   
    --连接数据库
    [postgres@ad data10]$ /usr/local/pgsql10/bin/psql -p 10000 -U postgres -h 127.0.0.1 -d postgres
    psql (10devel)
    Type "help" for help.
    
    postgres=# 

    三、分区表介绍

    PostgreSQL的分区表跟先前版本一样,也要先建立主表,然后再建立子表,使用继承的特性,但不需要手工写规则了,这个比较赞阿。目前支持range、list分区,10正式版本发布时不知会不会支持其它方法。

    range分区表

    1、分区主表

    create table order_range(id bigserial not null,userid integer,product text, createdate date) partition by range ( createdate );

    分区主表不能建立全局约束,使用partition by range(xxx)说明分区的方式,xxx可以是多个字段,表达式……,具体见https://www.postgresql.org/docs/devel/static/sql-createtable.html

    2、分区子表

    create table order_range(id bigserial not null,userid integer,product text, 
              createdate date not null) partition by range ( createdate );
    create table order_range_201701 partition of order_range(id primary key,userid,product, 
              createdate) for values from ('2017-01-01') to ('2017-02-01');
    create table order_range_201702 partition of order_range(id primary key,userid,product, 
              createdate) for values from ('2017-02-01') to ('2017-03-01');
    • 说明:
    • 建立分区表时必需指定主表。
    • 分区表和主表的 列数量,定义 必须完全一致。
    • 分区表的列可以单独增加Default值,或约束。
    • 当用户向主表插入数据库时,系统自动路由到对应的分区,如果没有找到对应分区,则抛出错误。
    • 指定分区约束的值(范围,LIST值),范围,LIST不能重叠,重叠的路由会卡壳。
    • 指定分区的列必需设置成not null,如建立主表时没设置系统会自动加上。
    • Range分区范围为 >=最小值 and <最大值……
    • 不支持通过更新的方法把数据从一个区移动到另外一个区,这样做会报错。如果要这样做的话需要删除原来的记录,再INSERT一条新的记录。
    • 修改主表的字段名,字段类型时,会自动同时修改所有的分区。
    • TRUNCATE 主表时,会清除所有继承表分区的记录,如果要清除单个分区,请对分区进行操作。
    • DROP主表时会把所有子表一起给DROP掉,如果drop单个分区,请对分区进行操作。
    • 使用psql能查看分区表的详细定义。
    postgres=# d+ order_range
                                                  Table "public.order_range"
       Column   |  Type   | Collation | Nullable |                 Default                 | Storage  | Stats target | Description 
    ------------+---------+-----------+----------+-----------------------------------------+----------+--------------+-------------
     id         | bigint  |           | not null | nextval('order_range_id_seq'::regclass) | plain    |              | 
     userid     | integer |           |          |                                         | plain    |              | 
     product    | text    |           |          |                                         | extended |              | 
     createdate | date    |           | not null |                                         | plain    |              | 
    Partition key: RANGE (createdate)
    Partitions: order_range_201701 FOR VALUES FROM ('2017-01-01') TO ('2017-02-01'),
                order_range_201702 FOR VALUES FROM ('2017-02-01') TO ('2017-03-01')
    
    postgres=# 

    list分区表

    1、分区主表

    create table order_list(id bigserial not null,userid integer,product text,area text, createdate date) partition by list( area );

    2、分区子表

    create table order_list_gd partition of order_list(id primary key,userid,product,area,createdate) for values in ('广东');
    create table order_list_bj partition of order_list(id primary key,userid,product,area,createdate) for values in ('北京');   

    多级分区表

    先按地区分区,再按日期分区

    1、主表

    create table order_range_list(id bigserial not null,userid integer,product text,area text, createdate date) partition by list ( area );

    2、一级分区表

    create table order_range_list_gd partition of order_range_list for values in ('广东') partition by range(createdate); 
    create table order_range_list_bj partition of order_range_list for values in ('北京') partition by range(createdate); 

    3、二级分区表

    create table order_range_list_gd_201701 partition of order_range_list_gd(id primary 
    key,userid,product,area,createdate) for values from ('2017-01-01') to ('2017-02-01'); 
    create table order_range_list_gd_201702 partition of order_range_list_gd(id primary 
    key,userid,product,area,createdate) for values from ('2017-02-01') to ('2017-03-01'); 
    
    create table order_range_list_bj_201701 partition of order_range_list_bj(id primary 
    key,userid,product,area,createdate) for values from ('2017-01-01') to ('2017-02-01'); 
    create table order_range_list_bj_201702 partition of order_range_list_bj(id primary 
    key,userid,product,area,createdate) for values from ('2017-02-01') to ('2017-03-01'); 

    直接操作分区也要受分区规则的约束

    postgres=# insert into order_range_201702 (id,userid,product,createdate) values(1,
    (random()::numeric(7,6)*1000000)::integer,md5(random()::text),('2017-01-01'));         
    ERROR:  new row for relation "order_range_201702" violates partition constraint
    DETAIL:  Failing row contains (1, 322345, 51a9357a78416d11a018949a42dd2f8d, 2017-01-01).

    INSERT提示违反了分区约束

    postgres=# update order_range_201701 set createdate='2017-02-01' where createdate='2017-01-17'; 
    ERROR:  new row for relation "order_range_201701" violates partition constraint
    DETAIL:  Failing row contains (1, 163357, 7e8fbe7b632a54ba1ec401d969f3259a, 2017-02-01).
    UPDATE提示违反了分区约束

    如果分区表是外部表,则约束失效,后面有介绍

    使用ALTER TABLE xxx ATTACH[DETACH] PARTITION 增加或删除分区

    1、移除分区

    录入2条测试数据

    postgres=# insert into order_range (userid,product,createdate) 
    values((random()::numeric(7,6)*1000000)::integer,md5(random()::text),('2017-01-01'::date+ 
    (random()*31)::integer));   
    INSERT 0 1
    Time: 25.006 ms
    postgres=# insert into order_range (userid,product,createdate) 
    values((random()::numeric(7,6)*1000000)::integer,md5(random()::text),('2017-01-01'::date+ 
    (random()*31)::integer));   
    INSERT 0 1
    Time: 7.601 ms
    postgres=# select * from order_range;
     id | userid |             product              | createdate 
    ----+--------+----------------------------------+------------
      1 | 163357 | 7e8fbe7b632a54ba1ec401d969f3259a | 2017-01-17
      2 | 349759 | 8095c9036295d3c800dace9069f9c102 | 2017-01-27
    (2 rows)

    删除分区

    postgres=# alter table order_range detach partition order_range_201701;
    ALTER TABLE
    Time: 14.129 ms

    查看确认分区没了

    postgres=# d+ order_range;
                                                      Table "public.order_range"
       Column   |  Type   | Collation | Nullable |                 Default                 | Storage  | Stats target | Description 
    ------------+---------+-----------+----------+-----------------------------------------+----------+--------------+-------------
     id         | bigint  |           | not null | nextval('order_range_id_seq'::regclass) | plain    |              | 
     userid     | integer |           |          |                                         | plain    |              | 
     product    | text    |           |          |                                         | extended |              | 
     createdate | date    |           | not null |                                         | plain    |              | 
    Partition key: RANGE (createdate)
    Partitions: order_range_201702 FOR VALUES FROM ('2017-02-01') TO ('2017-03-01')
    
    postgres=# 

    数据也查不出来了

    postgres=# select * from order_range;
     id | userid | product | createdate 
    ----+--------+---------+------------
    (0 rows)
    
    Time: 0.505 ms

    但分区表还在

    postgres=# select * from order_range_201701;
     id | userid |             product              | createdate 
    ----+--------+----------------------------------+------------
      1 | 163357 | 7e8fbe7b632a54ba1ec401d969f3259a | 2017-01-17
      2 | 349759 | 8095c9036295d3c800dace9069f9c102 | 2017-01-27
    (2 rows)
    
    Time: 0.727 ms

     2、添加分区

    postgres=# alter table order_range attach partition order_range_201701 FOR VALUES FROM ('2017-01-01') TO ('2017-02-01');          
    ERROR:  column "createdate" in child table must be marked NOT NULL
    Time: 0.564 ms

    增加子表里,约束需要与主表一致

    postgres=# alter table order_range_201701 alter column createdate set not null;
    ALTER TABLE
    Time: 17.345 ms
    
    postgres=# alter table order_range attach partition order_range_201701 FOR VALUES FROM ('2017-01-01') TO ('2017-01-15');      
    ERROR:  partition constraint is violated by some row
    Time: 1.276 ms

    加回来时可以修改其约束范围,但数据必需在约束的规则范围内

    postgres=# alter table order_range attach partition order_range_201701 FOR VALUES FROM 
    ('2017-01-01') TO ('2017-02-01');    
    ALTER TABLE
    Time: 18.407 ms

    分区表又加回来了

    postgres=# d+ order_range
                                                      Table "public.order_range"
       Column   |  Type   | Collation | Nullable |                 Default                 | Storage  | Stats target | Description 
    ------------+---------+-----------+----------+-----------------------------------------+----------+--------------+-------------
     id         | bigint  |           | not null | nextval('order_range_id_seq'::regclass) | plain    |              | 
     userid     | integer |           |          |                                         | plain    |              | 
     product    | text    |           |          |                                         | extended |              | 
     createdate | date    |           | not null |                                         | plain    |              | 
    Partition key: RANGE (createdate)
    Partitions: order_range_201701 FOR VALUES FROM ('2017-01-01') TO ('2017-02-01'),
                order_range_201702 FOR VALUES FROM ('2017-02-01') TO ('2017-03-01')
    
    postgres=# select * from order_range;
     id | userid |             product              | createdate 
    ----+--------+----------------------------------+------------
      1 | 163357 | 7e8fbe7b632a54ba1ec401d969f3259a | 2017-01-17
      2 | 349759 | 8095c9036295d3c800dace9069f9c102 | 2017-01-27
    (2 rows)
    
    Time: 0.627 ms

    添加外部表作为分区表

    --增加一个新库,建立需要的外部表

    [postgres@ad root]$ /usr/local/pgsql10/bin/psql -p 10000 -U postgres -h 127.0.0.1 -d postgres
    psql (10devel)
    Type "help" for help.
    #建立数据库
    postgres=# create database postgres_fdw;
    CREATE DATABASE
    postgres_fdw=# create table order_range_fdw(id bigserial not null,userid integer,product text, createdate date not null);
    CREATE TABLE
    postgres_fdw=# 
    
    #录入一条测试数据
    
    postgres_fdw=# insert into order_range_fdw (userid,product,createdate) 
    values((random()::numeric(7,6)*1000000)::integer,md5(random()::text),('2017-01-01'::date- 
    (random()*31)::integer)); 
    INSERT 0 1
    postgres_fdw=# select * from order_range_fdw;
     id | userid |             product              | createdate 
    ----+--------+----------------------------------+------------
      2 | 300686 | 55956a07742d6aebdef7ebb78c2400d7 | 2016-12-22
    (1 row)

    --在postgres库中增加外部表order_range_fdw

    [postgres@ad root]$ /usr/local/pgsql10/bin/psql -p 10000 -U postgres -h 127.0.0.1 -d postgres
    psql (10devel)
    Type "help" for help.
    
    #增加postgres_fdw模块
    
    postgres=# create extension postgres_fdw;
    CREATE EXTENSION
    
    #建立外部服务器
    
    postgres=# CREATE SERVER foreign_server  
            FOREIGN DATA WRAPPER postgres_fdw
            OPTIONS (host '192.168.1.10', port '10000', dbname 'postgres_fdw');
    CREATE SERVER
    
    #建立外部服务器用户标识
    
    postgres=# CREATE USER MAPPING FOR postgres
    postgres-#         SERVER foreign_server
    postgres-#         OPTIONS (user 'postgres', password '');
    CREATE USER MAPPING
    
    #建立外部表
    postgres=# CREATE FOREIGN TABLE order_range_fdw (
    postgres(#         id bigint not null,
    postgres(#         userid integer,
    postgres(#         product text, 
    postgres(#         createdate date not null
    postgres(# )
    postgres-# SERVER foreign_server
    postgres-# OPTIONS (schema_name 'public', table_name 'order_range_fdw');
    CREATE FOREIGN TABLE
    
    #查询数据
    
    postgres=# select * from order_range_fdw;
     id | userid |             product              | createdate 
    ----+--------+----------------------------------+------------
      2 | 300686 | 55956a07742d6aebdef7ebb78c2400d7 | 2016-12-22
    (1 row)
    
    --将外部表作为分区表添加到order_range下
    
    #添加分区表
    
    postgres=# alter table order_range attach partition order_range_fdw FOR VALUES FROM ('1900-01-01') TO ('2017-01-01');  
    ALTER TABLE
    
    #查看order_range下的所有分区表
    
    postgres=# d+ order_range
                                                      Table "public.order_range"
       Column   |  Type   | Collation | Nullable |                 Default                 | Storage  | Stats target | Description 
    ------------+---------+-----------+----------+-----------------------------------------+----------+--------------+-------------
     id         | bigint  |           | not null | nextval('order_range_id_seq'::regclass) | plain    |              | 
     userid     | integer |           |          |                                         | plain    |              | 
     product    | text    |           |          |                                         | extended |              | 
     createdate | date    |           | not null |                                         | plain    |              | 
    Partition key: RANGE (createdate)
    Partitions: order_range_201701 FOR VALUES FROM ('2017-01-01') TO ('2017-02-01'),
                order_range_201702 FOR VALUES FROM ('2017-02-01') TO ('2017-03-01'),
                order_range_fdw FOR VALUES FROM ('1900-01-01') TO ('2017-01-01')
    
    #查询数据
    
    postgres=# select * from order_range where createdate<'2017-01-01';
     id | userid |             product              | createdate 
    ----+--------+----------------------------------+------------
      2 | 300686 | 55956a07742d6aebdef7ebb78c2400d7 | 2016-12-22
    (1 row)
    
    #查看执行计划
    
    postgres=# explain select * from order_range where createdate<'2017-01-01';
                                       QUERY PLAN                                   
    --------------------------------------------------------------------------------
     Append  (cost=100.00..131.79 rows=379 width=48)
       ->  Foreign Scan on order_range_fdw  (cost=100.00..131.79 rows=379 width=48)
    (2 rows)
    
    #测试看看能不能更新数据
    
    postgres=# insert into order_range (userid,product,createdate) 
    values((random()::numeric(7,6)*1000000)::integer,md5(random()::text),('2017-01-01'::date-
    (random()*31)::integer)); 
    ERROR:  cannot route inserted tuples to a foreign table
    
    postgres=# update order_range set createdate='2016-12-01' where createdate='2016-12-22';                           
    UPDATE 1
    postgres=# select * from order_range where createdate<'2017-01-01';
     id | userid |             product              | createdate 
    ----+--------+----------------------------------+------------
      2 | 300686 | 55956a07742d6aebdef7ebb78c2400d7 | 2016-12-01
    (1 row)
    
    postgres=# delete from order_range where createdate='2016-12-01';
    DELETE 1
    postgres=# select * from order_range where createdate<'2017-01-01';
     id | userid | product | createdate 
    ----+--------+---------+------------
    (0 rows)
    
    postgres=# 

    插入数据时竟然不能路由到外部表,这个是处于什么考虑呢???,源码中只是提示 /* We do not yet have a way to insert into a foreign partition */

    还没有办法这样做,猜猜后面的版本应该能实现

    下面再说说使用外部表作为分区表还有一些问题

    1、无法约束向分区表插入约束外的数据,如下所示

    postgres=# d+  order_range
                                                      Table "public.order_range"
       Column   |  Type   | Collation | Nullable |                 Default                 | Storage  | Stats target | Description 
    ------------+---------+-----------+----------+-----------------------------------------+----------+--------------+-------------
     id         | bigint  |           | not null | nextval('order_range_id_seq'::regclass) | plain    |              | 
     userid     | integer |           |          |                                         | plain    |              | 
     product    | text    |           |          |                                         | extended |              | 
     createdate | date    |           | not null |                                         | plain    |              | 
    Partition key: RANGE (createdate)
    Partitions: order_range_201701 FOR VALUES FROM ('2017-01-01') TO ('2017-02-01'),
                order_range_201702 FOR VALUES FROM ('2017-02-01') TO ('2017-03-01'),
                order_range_fdw FOR VALUES FROM ('1900-01-01') TO ('2017-01-01')
    
    postgres=# 
    postgres=# insert into order_range_fdw (id,userid,product,createdate) values(1,
    (random()::numeric(7,6)*1000000)::integer,md5(random()::text),('2017-01-01'));        
    INSERT 0 1
    postgres=# select * from order_range;
     id | userid |             product              | createdate 
    ----+--------+----------------------------------+------------
      1 | 163357 | 7e8fbe7b632a54ba1ec401d969f3259a | 2017-01-17
      2 | 349759 | 8095c9036295d3c800dace9069f9c102 | 2017-01-27
      1 | 621895 | 5546c6e2a7006b52b5c2df55e19b3759 | 2017-02-01
      4 | 313019 | 445316004208e09fb4e7eda2bf5b0865 | 2017-01-01
      1 | 505836 | 6e9232c4863c82a2e97b9157996572ea | 2017-01-01
    (5 rows)
    
    postgres=# select * from order_range where createdate ='2017-01-01';
     id | userid | product | createdate 
    ----+--------+---------+------------
    (0 rows)

    如果这样操作会导致数据查询出现不匹配。

    2、sql执行时无法下推

    Sql执行无法下推的话对于聚集函数的执行存在很大的性能问题,使用时一定要特别的注意,如下所示

    postgres=# delete from order_range_fdw;
    DELETE 1
    postgres=# insert into order_range_fdw (id,userid,product,createdate) values(1,
    (random()::numeric(7,6)*1000000)::integer,md5(random()::text),('2016-01-01'));           
    INSERT 0 1
    postgres=# insert into order_range_fdw (id,userid,product,createdate) values(1,
    (random()::numeric(7,6)*1000000)::integer,md5(random()::text),('2016-02-01'));         
    INSERT 0 1
    
    #访问order_range,基执行是
    
    postgres=# explain analyze select count(1) from order_range where createdate<'2017-01-01';
                                   QUERY PLAN                                            
    ------------------------------------------------------------------------------------------
     Aggregate  (cost=178.27..178.28 rows=1 width=8) (actual time=0.656..0.656 rows=1 loops=1)
       ->  Append  (cost=100.00..175.42 rows=1138 width=0) (actual time=0.647..0.649 rows=2 loops=1)
             ->  Foreign Scan on order_range_fdw  (cost=100.00..175.42 rows=1138 width=0) (actual 
    time=0.647..0.648 rows=2 loops=1)
     Planning time: 0.267 ms
     Execution time: 1.122 ms
    (5 rows)
    #直接访问外部表
    postgres=# explain analyze select count(1) from order_range_fdw where createdate<'2017-01-01';
                                              QUERY PLAN                         
    -------------------------------------------------------------------------------------------
     Foreign Scan  (cost=102.84..155.54 rows=1 width=8) (actual time=0.661..0.662 rows=1 loops=1)
       Relations: Aggregate on (public.order_range_fdw)
     Planning time: 0.154 ms
     Execution time: 1.051 ms
    (4 rows)

    3、sql查询需要访问的分区表中包含了“外部分区表”和“非外部分区表”时, 无法使用Parallel Seq Scan,如下所示

    #插入100W数据到分区表中
    
    postgres=# insert into order_range (userid,product,createdate) SELECT 
    (random()::numeric(7,6)*1000000)::integer,md5(random()::text),('2017-01-01'::date+ 
    (random()*58)::integer) from generate_series(1,1000000);   
    INSERT 0 1000000
    
    #访问所有的分区表
    postgres=# explain select count(1) from order_range;
                                          QUERY PLAN                                       
    ---------------------------------------------------------------------------------------
     Aggregate  (cost=24325.22..24325.23 rows=1 width=8)
       ->  Append  (cost=0.00..21558.23 rows=1106797 width=0)
             ->  Seq Scan on order_range_201701  (cost=0.00..11231.82 rows=580582 width=0)
             ->  Seq Scan on order_range_201702  (cost=0.00..10114.02 rows=522802 width=0)
             ->  Foreign Scan on order_range_fdw  (cost=100.00..212.39 rows=3413 width=0)
    (5 rows)
    
    #只访问“非外部分区表”
    postgres=# explain select count(1) from order_range where createdate>='2017-01-01';
                                             QUERY PLAN                            
    -------------------------------------------------------------------------------------
     Finalize Aggregate  (cost=17169.84..17169.85 rows=1 width=8)
       ->  Gather  (cost=17169.62..17169.83 rows=2 width=8)
             Workers Planned: 2
             ->  Partial Aggregate  (cost=16169.62..16169.63 rows=1 width=8)
                   ->  Append  (cost=0.00..15803.52 rows=146440 width=0)
                         ->  Parallel Seq Scan on order_range_201701  (cost=0.00..8449.86 
    rows=80636 width=0)
                               Filter: (createdate >= '2017-01-01'::date)
                         ->  Parallel Seq Scan on order_range_201702  (cost=0.00..7353.66 
    rows=65804 width=0)
                               Filter: (createdate >= '2017-01-01'::date)
    (9 rows)
    
    postgres=# 

    外部分区表的应用场景

    将业务库上的不再修改的冷数全部分离到另一个节点上面,然后做为外部分区表挂上来。这样可以保持业务库的容量尽可以的轻,同时也不会对业务有侵入,这一点是非常的友好。但要注意Sql执行无法下推的问题,无法使用Parallel Seq Scan问题。

    如果在后面版本中能解决fdw partition insert路由问题和sql语句执行下推问题那么就可以拿来做olap应用了。

    四、建立测试业务表

    下面模似一个用户收支流水表

    --非分区表

    create table t_pay_all (id serial not null primary key,userid integer not null,pay_money float8 not 
    null,createdate date not null);
    create index t_pay_all_userid_idx on t_pay_all using btree(userid);  
    create index t_pay_all_createdate_idx on t_pay_all using btree(createdate);

    --分区表

    生成12个分区,一个月份一个表

    create table t_pay (id serial not null,userid integer not null,pay_money float8 not null,createdate 
    date not null) partition by range (createdate);
    create table t_pay_201701 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-01-01') to ('2017-02-01');
    create index t_pay_201701_createdate_idx on t_pay_201701 using btree(createdate); 
    create index t_pay_201701_userid_idx on t_pay_201701 using btree(userid); 
    create table t_pay_201702 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-02-01') to ('2017-03-01');
    create index t_pay_201702_createdate_idx on t_pay_201702 using btree(createdate); 
    create index t_pay_201702_userid_idx on t_pay_201702 using btree(userid);  
    create table t_pay_201703 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-03-01') to ('2017-04-01');
    create index t_pay_201703_createdate_idx on t_pay_201703 using btree(createdate); 
    create index t_pay_201703_userid_idx on t_pay_201703 using btree(userid);  
    create table t_pay_201704 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-04-01') to ('2017-05-01');
    create index t_pay_201704_createdate_idx on t_pay_201704 using btree(createdate); 
    create index t_pay_201704_userid_idx on t_pay_201704 using btree(userid);  
    create table t_pay_201705 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-05-01') to ('2017-06-01');
    create index t_pay_201705_createdate_idx on t_pay_201705 using btree(createdate); 
    create index t_pay_201705_userid_idx on t_pay_201705 using btree(userid);  
    create table t_pay_201706 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-06-01') to ('2017-07-01');
    create index t_pay_201706_createdate_idx on t_pay_201706 using btree(createdate); 
    create index t_pay_201706_userid_idx on t_pay_201706 using btree(userid);  
    create table t_pay_201707 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-07-01') to ('2017-08-01');
    create index t_pay_201707_createdate_idx on t_pay_201707 using btree(createdate); 
    create index t_pay_201707_userid_idx on t_pay_201707 using btree(userid);  
    create table t_pay_201708 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-08-01') to ('2017-09-01');
    create index t_pay_201708_createdate_idx on t_pay_201708 using btree(createdate); 
    create index t_pay_201708_userid_idx on t_pay_201708 using btree(userid);  
    create table t_pay_201709 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-09-01') to ('2017-10-01');
    create index t_pay_201709_createdate_idx on t_pay_201709 using btree(createdate); 
    create index t_pay_201709_userid_idx on t_pay_201709 using btree(userid);  
    create table t_pay_201710 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-10-01') to ('2017-11-01');
    create index t_pay_201710_createdate_idx on t_pay_201710 using btree(createdate); 
    create index t_pay_201710_userid_idx on t_pay_201710 using btree(userid);  
    create table t_pay_201711 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-11-01') to ('2017-12-01');
    create index t_pay_201711_createdate_idx on t_pay_201711 using btree(createdate); 
    create index t_pay_201711_userid_idx on t_pay_201711 using btree(userid);  
    create table t_pay_201712 partition of t_pay(id primary key,userid,pay_money,createdate) for values 
    from ('2017-12-01') to ('2018-01-01');
    create index t_pay_201712_createdate_idx on t_pay_201712 using btree(createdate); 
    create index t_pay_201712_userid_idx on t_pay_201712 using btree(userid);  

    五、性能测试

    数据导入

    --生成测试数据1000W条记录(尽可能平均分布)

    postgres=# copy (select (random()::numeric(7,6)*1000000)::integer as 
    userid,round((random()*100)::numeric,2) as pay_money,('2017-01-01'::date+ (random()*364)::integer)
     as createtime from generate_series(1,10000000)) to '/home/pg/data.txt';
    COPY 10000000
    Time: 42674.548 ms (00:42.675)

    --非分区表数据导入测试

    postgres=# copy  t_pay_all(userid,pay_money,createdate) from '/home/pg/data.txt';    
    COPY 10000000
    Time: 114258.743 ms (01:54.259)

    --分区表数据导入测试

    postgres=# copy  t_pay(userid,pay_money,createdate) from '/home/pg/data.txt'; 
    COPY 10000000
    Time: 186358.447 ms (03:06.358)
    postgres=# 

    结论:数据导入时性能相差大约是一半,所以大数据量导入时最好直接导成分区表数据,然后直接对分区表进行操作

    查询某一天的数据--直接从cache里取数据

    --非分区表

    postgres=# explain  (analyze,buffers) select * from t_pay_all where createdate ='2017-06-01';
                                                 QUERY PLAN                                                
    -------------------------------------------------------------------------------------------
     Bitmap Heap Scan on t_pay_all  (cost=592.06..50797.88 rows=27307 width=20) (actual 
    time=14.544..49.039 rows=27384 loops=1)
       Recheck Cond: (createdate = '2017-06-01'::date)
       Heap Blocks: exact=22197
       Buffers: shared hit=22289
       ->  Bitmap Index Scan on t_pay_all_createdate_idx  (cost=0.00..585.24 rows=27307 width=0) 
    (actual time=7.121..7.121 rows=27384 loops=1)
             Index Cond: (createdate = '2017-06-01'::date)
             Buffers: shared hit=92
     Planning time: 0.153 ms
     Execution time: 51.583 ms
    (9 rows)
    Time: 52.272 ms

    --分区表

    postgres=# explain  (analyze,buffers) select * from t_pay where createdate ='2017-06-01';
                                      QUERY PLAN               
    ----------------------------------------------------------------------------------------------
     Append  (cost=608.92..6212.11 rows=27935 width=20) (actual time=4.880..27.032 rows=27384 loops=1)
       Buffers: shared hit=5323
       ->  Bitmap Heap Scan on t_pay_201706  (cost=608.92..6212.11 rows=27935 width=20) (actual 
    time=4.879..21.990 rows=27384 loops=1)
             Recheck Cond: (createdate = '2017-06-01'::date)
             Heap Blocks: exact=5226
             Buffers: shared hit=5323
             ->  Bitmap Index Scan on t_pay_201706_createdate_idx  (cost=0.00..601.94 rows=27935 
    width=0) (actual time=3.399..3.399 rows=27384 loops=1)
                   Index Cond: (createdate = '2017-06-01'::date)
                   Buffers: shared hit=97
     Planning time: 0.521 ms
     Execution time: 30.061 ms
    (11 rows)

    结论:分区表的Planning time时间明显比非分区表要高,但比起Execution time基本可以忽略。

    查询某个时间范围的数据

    1、时间范围落在同一个分区内

    --非分区表

    postgres=# explain (analyze,buffers)select * from t_pay_all where createdate >='2017-06-01' 
    AND createdate<'2017-07-01';
                                           QUERY PLAN               
    ------------------------------------------------------------------------------------------
     Bitmap Heap Scan on t_pay_all  (cost=19802.01..95862.00 rows=819666 width=20) (actual 
    time=115.210..459.547 rows=824865 loops=1)
       Recheck Cond: ((createdate >= '2017-06-01'::date) AND (createdate < '2017-07-01'::date))
       Heap Blocks: exact=63701
       Buffers: shared read=66578
       ->  Bitmap Index Scan on t_pay_all_createdate_idx  (cost=0.00..19597.10 rows=819666 width=0)
    (actual time=101.453..101.453 rows=825865 loops=1)
             Index Cond: ((createdate >= '2017-06-01'::date) AND (createdate < '2017-07-01'::date))
             Buffers: shared read=2877
     Planning time: 0.166 ms
     Execution time: 504.297 ms
    (9 rows)
    
    Time: 505.021 ms
    postgres=# explain (analyze,buffers)select count(1) from t_pay_all where createdate >='2017-06-01' 
    AND createdate<'2017-07-01'; 
                                                QUERY PLAN
    ----------------------------------------------------------------------------------------------
     Finalize Aggregate  (cost=90543.96..90543.97 rows=1 width=8) (actual time=335.334..335.335 
    rows=1 loops=1)
       Buffers: shared hit=351 read=66593
       ->  Gather  (cost=90543.74..90543.95 rows=2 width=8) (actual time=334.988..335.327 rows=3
    loops=1)
             Workers Planned: 2
             Workers Launched: 2
             Buffers: shared hit=351 read=66593
             ->  Partial Aggregate  (cost=89543.74..89543.75 rows=1 width=8) (actual
    time=330.796..330.797 rows=1 loops=3)
                   Buffers: shared read=66578
                   ->  Parallel Bitmap Heap Scan on t_pay_all  (cost=19802.01..88689.92 rows=341528
     width=0) (actual time=124.126..303.125 rows=274955 loops=3)
                         Recheck Cond: ((createdate >= '2017-06-01'::date) AND (createdate <
     '2017-07-01'::date))
                         Heap Blocks: exact=25882
                         Buffers: shared read=66578
                         ->  Bitmap Index Scan on t_pay_all_createdate_idx  (cost=0.00..19597.10 
    rows=819666 width=0) (actual time=111.233..111.233 rows=825865 loops=1)
                               Index Cond: ((createdate >= '2017-06-01'::date) AND (createdate < 
    '2017-07-01'::date))
                               Buffers: shared read=2877
     Planning time: 0.213 ms
     Execution time: 344.013 ms
    (17 rows)
    
    Time: 344.759 ms
    postgres=# 

    --分区表

    postgres=# explain (analyze,buffers)select * from t_pay where createdate >='2017-06-01' AND 
    createdate<'2017-07-01';        
                                  QUERY PLAN                            
    -------------------------------------------------------------------------------------------
     Append  (cost=0.00..17633.97 rows=824865 width=20) (actual time=0.020..272.926 rows=824865
     loops=1)
       Buffers: shared hit=5261
       ->  Seq Scan on t_pay_201706  (cost=0.00..17633.97 rows=824865 width=20) (actual 
    time=0.019..170.128 rows=824865 loops=1)
             Filter: ((createdate >= '2017-06-01'::date) AND (createdate < '2017-07-01'::date))
             Buffers: shared hit=5261
     Planning time: 0.779 ms
     Execution time: 335.351 ms
    (7 rows)
    
    Time: 336.676 ms
    postgres=# explain (analyze,buffers)select count(1) from t_pay where createdate >='2017-06-01' 
    AND createdate<'2017-07-01';
                                       QUERY PLAN                              
    --------------------------------------------------------------------------------------------
     Finalize Aggregate  (cost=12275.86..12275.87 rows=1 width=8) (actual time=144.023..144.023 
    rows=1 loops=1)
       Buffers: shared hit=5429
       ->  Gather  (cost=12275.64..12275.85 rows=2 width=8) (actual time=143.966..144.016 rows=3
     loops=1)
             Workers Planned: 2
             Workers Launched: 2
             Buffers: shared hit=5429
             ->  Partial Aggregate  (cost=11275.64..11275.65 rows=1 width=8) (actual
     time=140.230..140.230 rows=1 loops=3)
                   Buffers: shared hit=5261
                   ->  Append  (cost=0.00..10416.41 rows=343694 width=0) (actual time=0.022..106.973
     rows=274955 loops=3)
                         Buffers: shared hit=5261
                         ->  Parallel Seq Scan on t_pay_201706  (cost=0.00..10416.41 rows=343694
     width=0) (actual time=0.020..68.952 rows=274955 loops=3)
                               Filter: ((createdate >= '2017-06-01'::date) AND (createdate <
     '2017-07-01'::date))
                               Buffers: shared hit=5261
     Planning time: 0.760 ms
     Execution time: 145.289 ms
    (15 rows)
    
    Time: 146.610 ms

    在同一个分区内查询优势明显

    2、不在同一个分区内

    --非分区表

    postgres=# explain (analyze,buffers)select count(1) from t_pay_all where createdate >='2017-06-01'
     AND createdate<'2017-12-01';
                                               QUERY PLAN    
    -------------------------------------------------------------------------------------------
     Finalize Aggregate  (cost=132593.42..132593.43 rows=1 width=8) (actual time=717.848..717.848
     rows=1 loops=1)
       Buffers: shared hit=33571 read=30446 dirtied=9508 written=4485
       ->  Gather  (cost=132593.20..132593.41 rows=2 width=8) (actual time=717.782..717.841 rows=3
     loops=1)
             Workers Planned: 2
             Workers Launched: 2
             Buffers: shared hit=33571 read=30446 dirtied=9508 written=4485
             ->  Partial Aggregate  (cost=131593.20..131593.21 rows=1 width=8) (actual
     time=714.096..714.097 rows=1 loops=3)
                   Buffers: shared hit=33319 read=30446 dirtied=9508 written=4485
                   ->  Parallel Seq Scan on t_pay_all  (cost=0.00..126330.64 rows=2105024 width=0)
     (actual time=0.059..545.016 rows=1675464 loops=3)
                         Filter: ((createdate >= '2017-06-01'::date) AND (createdate <
     '2017-12-01'::date))
                         Rows Removed by Filter: 1661203
                         Buffers: shared hit=33319 read=30446 dirtied=9508 written=4485
     Planning time: 0.178 ms
     Execution time: 721.822 ms
    (14 rows)
    
    Time: 722.521 ms

    --分区表

    postgres=# explain (analyze,buffers)select count(1) from t_pay where createdate >='2017-06-01' 
    AND createdate<'2017-12-01';
                                      QUERY PLAN  
    ------------------------------------------------------------------------------------------
     Finalize Aggregate  (cost=69675.98..69675.99 rows=1 width=8) (actual time=714.560..714.560 rows=1
     loops=1)
       Buffers: shared hit=27002 read=5251
       ->  Gather  (cost=69675.77..69675.98 rows=2 width=8) (actual time=714.426..714.551 rows=3
     loops=1)
             Workers Planned: 2
             Workers Launched: 2
             Buffers: shared hit=27002 read=5251
             ->  Partial Aggregate  (cost=68675.77..68675.78 rows=1 width=8) (actual
     time=710.416..710.416 rows=1 loops=3)
                   Buffers: shared hit=26774 read=5251
                   ->  Append  (cost=0.00..63439.94 rows=2094330 width=0) (actual time=0.023..536.033
     rows=1675464 loops=3)
                         Buffers: shared hit=26774 read=5251
                         ->  Parallel Seq Scan on t_pay_201706  (cost=0.00..10416.41 rows=343694
     width=0) (actual time=0.021..67.935 rows=274955 loops=3)
                               Filter: ((createdate >= '2017-06-01'::date) AND (createdate <
     '2017-12-01'::date))
                               Buffers: shared hit=5261
                         ->  Parallel Seq Scan on t_pay_201707  (cost=0.00..10728.06 rows=354204
     width=0) (actual time=0.007..54.999 rows=283363 loops=3)
                               Filter: ((createdate >= '2017-06-01'::date) AND (createdate <
     '2017-12-01'::date))
                               Buffers: shared hit=5415
                         ->  Parallel Seq Scan on t_pay_201708  (cost=0.00..10744.08 rows=354738 
    width=0) (actual time=0.007..55.117 rows=283791 loops=3)
                               Filter: ((createdate >= '2017-06-01'::date) AND (createdate < 
    '2017-12-01'::date))
                               Buffers: shared hit=5423
                         ->  Parallel Seq Scan on t_pay_201709  (cost=0.00..10410.71 rows=343714 
    width=0) (actual time=0.007..53.402 rows=274971 loops=3)
                               Filter: ((createdate >= '2017-06-01'::date) AND (createdate < 
    '2017-12-01'::date))
                               Buffers: shared hit=5255
                         ->  Parallel Seq Scan on t_pay_201710  (cost=0.00..10737.41 rows=354494 
    width=0) (actual time=0.007..55.475 rows=283595 loops=3)
                               Filter: ((createdate >= '2017-06-01'::date) AND (createdate < 
    '2017-12-01'::date))
                               Buffers: shared hit=5420
                         ->  Parallel Seq Scan on t_pay_201711  (cost=0.00..10403.29 rows=343486 
    width=0) (actual time=0.036..57.635 rows=274789 loops=3)
                               Filter: ((createdate >= '2017-06-01'::date) AND (createdate < 
    '2017-12-01'::date))
                               Buffers: shared read=5251
     Planning time: 1.217 ms
     Execution time: 718.372 ms
    (30 rows)

    跨分区查询,大约在跨一半分区时性能相当。

    查询某个月里某个用户数据--直接从cache里取数据

    1、数据都落在所在分区,并且数据量极少

    --非分区表

    postgres=# explain (analyze,buffers) select * from t_pay_all where createdate>='2017-06-01' 
    AND createdate<'2017-07-01' and userid=268460;    
                                   QUERY PLAN                              
    --------------------------------------------------------------------------------------------
     Index Scan using t_pay_all_userid_idx on t_pay_all  (cost=0.43..48.68 rows=1 width=20) 
    (actual time=0.053..0.071 rows=7 loops=1)
       Index Cond: (userid = 268460)
       Filter: ((createdate >= '2017-06-01'::date) AND (createdate < '2017-07-01'::date))
       Rows Removed by Filter: 10
       Buffers: shared hit=20
     Planning time: 0.149 ms
     Execution time: 0.101 ms
    (7 rows)
    
    Time: 0.676 ms

    --分区表

    postgres=# explain (analyze,buffers) select * from t_pay where createdate >='2017-06-01' 
    AND createdate<'2017-07-01' and userid=268460;    
                                       QUERY PLAN                            
    ------------------------------------------------------------------------------------------
     Append  (cost=0.42..12.47 rows=2 width=20) (actual time=0.019..0.032 rows=7 loops=1)
       Buffers: shared hit=10
       ->  Index Scan using t_pay_201706_userid_idx on t_pay_201706  (cost=0.42..12.47 rows=2 width=20) 
    (actual time=0.018..0.029 rows=7 loops=1)
             Index Cond: (userid = 268460)
             Filter: ((createdate >= '2017-06-01'::date) AND (createdate < '2017-07-01'::date))
             Buffers: shared hit=10
     Planning time: 0.728 ms
     Execution time: 0.064 ms
    (8 rows)
    
    Time: 1.279 ms

    在返回记录极少的情况下由于分布表的Planning time开销较大,所以非分区表有优势

    2、数据落在其它分区,并且数据量比较大

    --非分区表

    postgres=#  explain (analyze,buffers) select * from t_pay_all where createdate >='2017-06-01' 
    AND createdate<'2017-07-01' and userid=302283 ; 
                                              QUERY PLAN                                                                       
    ---------------------------------------------------------------------------------------------
     Bitmap Heap Scan on t_pay_all  (cost=19780.69..22301.97 rows=683 width=20) (actual
     time=91.778..91.803 rows=2 loops=1)
       Recheck Cond: ((userid = 302283) AND (createdate >= '2017-06-01'::date) AND (createdate < '2017-07-01'::date))
       Heap Blocks: exact=9
       Buffers: shared hit=2927
       ->  BitmapAnd  (cost=19780.69..19780.69 rows=683 width=0) (actual time=91.767..91.767 rows=0 loops=1)
             Buffers: shared hit=2918
             ->  Bitmap Index Scan on t_pay_all_userid_idx  (cost=0.00..183.00 rows=8342 width=0)
     (actual time=0.916..0.916 rows=11013 loops=1)
                   Index Cond: (userid = 302283)
                   Buffers: shared hit=41
             ->  Bitmap Index Scan on t_pay_all_createdate_idx  (cost=0.00..19597.10 rows=819666 
    width=0) (actual time=90.837..90.837 rows=825865 loops=1)
                   Index Cond: ((createdate >= '2017-06-01'::date) AND (createdate < '2017-07-01'::date))
                   Buffers: shared hit=2877
     Planning time: 0.172 ms
     Execution time: 91.851 ms
    (14 rows)
    
    Time: 92.534 ms

    --分区表

    postgres=# explain (analyze,buffers) select * from t_pay where createdate >='2017-06-01' 
    AND createdate<'2017-07-01' and userid=302283 ; 
                                             QUERY PLAN                                                                  
    -------------------------------------------------------------------------------------------
     Append  (cost=0.42..12.47 rows=2 width=20) (actual time=0.042..0.046 rows=2 loops=1)
       Buffers: shared hit=7
       ->  Index Scan using t_pay_201706_userid_idx on t_pay_201706  (cost=0.42..12.47 rows=2 width=20) 
    (actual time=0.041..0.045 rows=2 loops=1)
             Index Cond: (userid = 302283)
             Filter: ((createdate >= '2017-06-01'::date) AND (createdate < '2017-07-01'::date))
             Buffers: shared hit=7
     Planning time: 0.818 ms
     Execution time: 0.096 ms
    (8 rows)
    
    Time: 1.499 ms

    这是分区表最大的优势体现了,性能提升不是一般的大

    索引维护

    --非分区表

    postgres=# REINDEX INDEX t_pay_all_createdate_idx;
    REINDEX
    Time: 11827.344 ms (00:11.827)

    --分区表

    postgres=# REINDEX INDEX t_pay_201706_createdate_idx;
    REINDEX
    Time: 930.439 ms
    postgres=# 

    这个也是分区表的优势,可以针对某个分区的索引进行重建。

    删除整个分区数据

    --非分区表

    postgres=# delete from t_pay_all where createdate >='2017-06-01' and createdate<'2017-07-01';
    DELETE 824865
    Time: 5775.545 ms (00:05.776)

    --分区表

    postgres=# truncate table t_pay_201706;
    TRUNCATE TABLE
    Time: 177.809 ms

    个也是分区表的优势,可以对某个分区直接truncate

    全表扫描

    --非分区表

    postgres=# explain analyze select count(1) from t_pay; 
                                           QUERY PLAN           
    ---------------------------------------------------------------------------------------------
     Finalize Aggregate  (cost=107370.96..107370.97 rows=1 width=8) (actual time=971.561..971.561 rows=1 loops=1)
       ->  Gather  (cost=107370.75..107370.96 rows=2 width=8) (actual time=971.469..971.555 rows=3 loops=1)
             Workers Planned: 2
             Workers Launched: 2
             ->  Partial Aggregate  (cost=106370.75..106370.76 rows=1 width=8) (actual 
    time=967.378..967.378 rows=1 loops=3)
                 ->  Append  (cost=0.00..96800.40 rows=3828141 width=0) (actual time=0.019..698.882 rows=3061712 loops=3)
                         ->  Parallel Seq Scan on t_pay_201701  (cost=0.00..8836.14 rows=349414 
    width=0) (actual time=0.017..48.716 rows=279531 loops=3)
                         ->  Parallel Seq Scan on t_pay_201702  (cost=0.00..8119.94 rows=321094 
    width=0) (actual time=0.007..33.072 rows=256875 loops=3)
                         ->  Parallel Seq Scan on t_pay_201703  (cost=0.00..9079.47 rows=359047 
    width=0) (actual time=0.006..37.153 rows=287238 loops=3)
                         ->  Parallel Seq Scan on t_pay_201704  (cost=0.00..8672.67 rows=342968 
    width=0) (actual time=0.006..35.317 rows=274374 loops=3)
                         ->  Parallel Seq Scan on t_pay_201705  (cost=0.00..8975.23 rows=354923 
    width=0) (actual time=0.006..36.571 rows=283938 loops=3)
                         ->  Parallel Seq Scan on t_pay_201706  (cost=0.00..20.00 rows=1000 width=0) 
    (actual time=0.000..0.000 rows=0 loops=3)
                         ->  Parallel Seq Scan on t_pay_201707  (cost=0.00..8957.04 rows=354204 
    width=0) (actual time=0.006..36.393 rows=283363 loops=3)
                         ->  Parallel Seq Scan on t_pay_201708  (cost=0.00..8970.38 rows=354738 
    width=0) (actual time=0.006..37.015 rows=283791 loops=3)
                         ->  Parallel Seq Scan on t_pay_201709  (cost=0.00..8692.14 rows=343714 
    width=0) (actual time=0.006..35.187 rows=274971 loops=3)
                         ->  Parallel Seq Scan on t_pay_201710  (cost=0.00..8964.94 rows=354494 
    width=0) (actual time=0.006..36.566 rows=283595 loops=3)
                         ->  Parallel Seq Scan on t_pay_201711  (cost=0.00..8685.86 rows=343486 
    width=0) (actual time=0.006..35.198 rows=274789 loops=3)
                         ->  Parallel Seq Scan on t_pay_201712  (cost=0.00..8826.59 rows=349059 
    width=0) (actual time=0.006..36.523 rows=279247 loops=3)
     Planning time: 0.706 ms
     Execution time: 977.364 ms
    (20 rows)
    
    Time: 978.705 ms
    postgres=# 

    --分区表

    postgres=# explain analyze select count(1) from t_pay_all;
                                      QUERY PLAN                   
    -------------------------------------------------------------------------------------------------
     Finalize Aggregate  (cost=116900.63..116900.64 rows=1 width=8) (actual time=644.093..644.093 
    rows=1 loops=1)
       ->  Gather  (cost=116900.42..116900.63 rows=2 width=8) (actual time=644.035..644.087 rows=3 loops=1)
             Workers Planned: 2
             Workers Launched: 2
             ->  Partial Aggregate  (cost=115900.42..115900.43 rows=1 width=8) (actual 
    time=640.587..640.587 rows=1 loops=3)
                   ->  Parallel Seq Scan on t_pay_all  (cost=0.00..105473.33 rows=4170833 width=0) 
    (actual time=0.344..371.965 rows=3061712 loops=3)
     Planning time: 0.164 ms
     Execution time: 645.438 ms
    (8 rows)
    
    Time: 646.027 ms

    全扫描时分区表落后,但还基本上能接收。

    增加新的分区并导入数据

    --生成新的分区数据

    copy (select userid,pay_money,createdate+31 as createdate from t_pay_201712) to '/home/pg/201801.txt';

    --建立新的分区

    create table t_pay_201801 partition of t_pay(id primary key,userid,pay_money,createdate) for 
    values from ('2018-01-01') to ('2018-02-01');
    create index t_pay_201801_createdate_idx on t_pay_201801 using btree(createdate); 
    create index t_pay_201801_userid_idx on t_pay_201801 using btree(userid); 

    --非分区表

    postgres=# copy t_pay_all(userid,pay_money,createdate) from '/home/pg/201801.txt';       
    COPY 837741
    Time: 18105.024 ms (00:18.105)

    --分区表

    postgres=# copy t_pay(userid,pay_money,createdate) from '/home/pg/201801.txt';     
    COPY 837741
    Time: 13864.950 ms (00:13.865)
    postgres=# 

    新的分区数据导入保持优势

  • 相关阅读:
    Find the capitals
    Area of a Circle
    SequenceSum
    使用Eclipse设定Android开发环境
    hdu 1290 竭诚为杭州电礼物50周年
    oracle connect by 说明
    CSS截取字符串,额外的文本显示以省略号
    动态规划——背包问题
    【MySQL笔记】mysql来源安装/配置步骤和支持中国gbk/gb2312编码配置
    博客搬到了http://xianglong.me
  • 原文地址:https://www.cnblogs.com/88223100/p/PostgreSQL_Partitioning_Benchmark.html
Copyright © 2020-2023  润新知