• L


    Problem F: Fabled Rooks

    ACM: <wbr>uva <wbr>11134We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the following restrictions

    • The i-th rook can only be placed within the rectangle given by its left-upper corner (xliyli) and its right-lower corner (xriyri), where 1 ≤ i ≤ n, 1 ≤ xli ≤ xri ≤ n, 1 ≤ yli ≤ yri ≤ n.
    • No two rooks can attack each other, that is no two rooks can occupy the same column or the same row.

    The input consists of several test cases. The first line of each of them contains one integer number, n, the side of the board. n lines follow giving the rectangles where the rooks can be placed as described above. The i-th line among them gives xliylixri, andyri. The input file is terminated with the integer `0' on a line by itself.

    Your task is to find such a placing of rooks that the above conditions are satisfied and then outputn lines each giving the position of a rook in order in which their rectangles appeared in the input. If there are multiple solutions, any one will do. Output IMPOSSIBLE if there is no such placing of the rooks.

    Sample input

    8 
    1 1 2 2 
    5 7 8 8 
    2 2 5 5 
    2 2 5 5 
    6 3 8 6 
    6 3 8 5 
    6 3 8 8 
    3 6 7 8 
    8 
    1 1 2 2 
    5 7 8 8 
    2 2 5 5 
    2 2 5 5 
    6 3 8 6 
    6 3 8 5 
    6 3 8 8 
    3 6 7 8 
    0 

    Output for sample input


    1 1 
    5 8 
    2 4 
    4 2 
    7 3 
    8 5 
    6 6 
    3 7 
    1 1 
    5 8 
    2 4 
    4 2 
    7 3 
    8 5 
    6 6 
    3 7 


     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 //#include <cmath>   命名冲突   y1 
     5 #include <algorithm>
     6 #include <string>
     7 #include <vector>
     8 #include <stack>
     9 #include <queue>
    10 #include <set>
    11 #include <map>
    12 #include <list>
    13 #include <iomanip>
    14 #include <cstdlib>
    15 #include <sstream>
    16 using namespace std;
    17 typedef long long LL;
    18 const int INF=0x5fffffff;
    19 const double EXP=1e-8;
    20 const int MS=5005;
    21 
    22 int x1[MS], y1[MS], x2[MS], y2[MS], x[MS], y[MS];
    23 
    24 /*
    25 先将各个车分配在同一列的不同行,然后分配不同的列,
    26 使他们彼此错开,任意两个车不在同一列和同一行。
    27 也就是说行和列的分配时可以分开的。或者说独立的
    28 使用贪心法分配。
    29 */
    30 
    31 bool solve(int *a,int *b,int *c,int n)
    32 {
    33    // memset(c,-1,sizeof(c));    注意这样是错误的,因为不知道c到哪里结束。字符串指针才可以,因为有结束符 
    34    fill(c,c+n,-1);          //  ==-1表示还没有分配
    35     for(int col=1;col<=n;col++)
    36     {
    37         int rook=-1,minb=n+1;
    38         for(int i=0;i<n;i++)
    39         {
    40             if(c[i]<0&&col>=a[i]&&b[i]<minb)
    41             {
    42                 rook=i;
    43                 minb=b[i];
    44             }
    45         }
    46         if(rook<0||col>minb)
    47             return false;
    48         c[rook]=col;
    49     }
    50     return true;
    51 }
    52 
    53 int main()
    54 {
    55     int n;
    56     while(scanf("%d",&n)&&n)
    57     {
    58         for(int i=0;i<n;i++)
    59             scanf("%d%d%d%d",&x1[i],&y1[i],&x2[i],&y2[i]);
    60         if(solve(x1,x2,x,n)&&solve(y1,y2,y,n))
    61             for(int i=0;i<n;i++)
    62                 printf("%d %d
    ",x[i],y[i]);
    63         else
    64             printf("IMPOSSIBLE
    ");
    65     }
    66     return 0;
    67 }
  • 相关阅读:
    mysql数据库基本类型
    常用辅助类【转】
    Java 并发笔记】并发机制底层实现整理[转发]
    关于PROPAGATION_NESTED的理解
    线程数设置
    c# Expression 扩展[转]
    Net定时器 【转载】
    【转】高可用设计-58沈剑
    【转】委托的三种调用示例(同步调用 异步调用 异步回调)
    [coursera OA] acme match
  • 原文地址:https://www.cnblogs.com/767355675hutaishi/p/4335970.html
Copyright © 2020-2023  润新知