• poj1459 Power Network(多源多汇最大流)


                                                                             Power Network
                                     Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σ uc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

    An example is in figure 1. The label x/y of power station u shows that p(u)=x and p max(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

    Input

    There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of c max(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

    Output

    For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

    Sample Input

    2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
    7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
             (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
             (0)5 (1)2 (3)2 (4)1 (5)4

    Sample Output

    15
    6

    Hint

    The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
     
     
    典型的多源多汇最大流问题,只要再找一个源点,一个汇点即可。
    #include<stdio.h>
    #include<queue>
    #include<string.h>
    #define MAXN 1000
    #define INF 1<<28
    
    int cap[MAXN][MAXN], vis[MAXN], pre[MAXN], maxflow[MAXN];
    
    using namespace std;
    
    int n, npow, ncon, m;
    void bfs()
    {
        queue<int>q;
        int i, Maxflow, u, v;
        Maxflow = 0;
    
    
        while(1)
        {
            memset(vis, 0, sizeof(vis));
            memset(pre, 0, sizeof(pre));
            memset(maxflow, 0, sizeof(maxflow));
    
            maxflow[n] = INF;
            q.push(n);
    
            vis[n] = 1;
            while(!q.empty())
            {
                u = q.front();
                q.pop();
                for(v=0; v<=n+1; v++){
                    if(!vis[v] && cap[u][v]>0){
                        vis[v] = 1;
                        pre[v] = u;
                        q.push(v);
                        maxflow[v] = maxflow[u]<cap[u][v]?maxflow[u]:cap[u][v];
                    }
                }
            }
            if(!maxflow[n+1]) break;
    
            for(i=n+1; i!=n; i=pre[i])
            {
                cap[pre[i]][i] -= maxflow[n+1];
                cap[i][pre[i]] += maxflow[n+1];
            }
            Maxflow += maxflow[n+1];
        }
        printf("%d
    ", Maxflow);
    }
    
    int main()
    {
         int i, u, v, c;
         while(~scanf("%d %d %d %d", &n, &npow, &ncon, &m))
         {
    
             memset(cap, 0, sizeof(cap));
    
             for(i=0; i<m; i++){
                 scanf(" (%d,%d)", &u, &v);
                 scanf("%d", &c);
                 cap[u][v] += c;
             }
    
             for(i=0; i<npow; i++){
                 scanf(" (%d)", &u);
                 scanf("%d", &c);
                 cap[n][u] += c;
             }
    
             for(i=0; i<ncon; i++){
                 scanf(" (%d)", &v);
                 scanf("%d", &c);
                 cap[v][n+1] += c;
             }
             bfs();
         }
         return 0;
    }
    View Code
    每天训练发现我比别人做的好慢,但是理解的更深刻,如果一开始学一个新知识点就搜模板,那么这样的人是走不远的,毕业之后带走的只有思维,什么荣誉,奖杯都已经不重要了。
  • 相关阅读:
    ThreadPoolExecutor线程池和ProcessPoolExecutor进程池
    canvas画一个时钟
    js中一些注意点 ps不断更新中....
    javascript文档节点
    Go网络编程
    Goroutine和Channel
    Go单元测试
    简单了解Go语言JSON包
    Go的命令行参数
    Go语言文件操作
  • 原文地址:https://www.cnblogs.com/6bing/p/3927117.html
Copyright © 2020-2023  润新知