PTA数据结构与算法题目集(中文) 7-6
7-6 列出连通集 (25 分)
给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v1 v2 ... vk }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 } { 3 5 } { 6 } { 0 1 2 7 4 } { 3 5 } { 6 }
题目分析:考察图基本功能的实现 深度优先遍历和广度优先遍历的实现 注意因为有的点不连通 所以要遍历一边 所有图节点看是否还有未被收录的
深度优先遍历使用递归访问 广度优先遍历利用队列来进行访问
1 #define _CRT_SECURE_NO_WARNINGS 2 #include<stdio.h> 3 #include<stdlib.h> 4 #include<malloc.h> 5 #define MaxVertexNum 100 6 7 typedef struct ENode* Edge; 8 struct ENode 9 { 10 int V1, V2; 11 }; 12 typedef struct GNode* Graph; 13 struct GNode 14 { 15 int Nv; 16 int Ne; 17 int G[MaxVertexNum][MaxVertexNum]; 18 }; 19 20 Graph BuildGraph(int VertexNum) 21 { 22 Graph Gra; 23 Gra = (Graph)malloc(sizeof(struct GNode)); 24 Gra->Ne = 0; 25 Gra->Nv = VertexNum; 26 for (int i = 0; i < VertexNum; i++) 27 for (int j = 0; j < VertexNum; j++) 28 Gra->G[i][j] = 0; 29 return Gra; 30 } 31 void InsertEdge(Edge E, Graph Gra) 32 { 33 Gra->G[E->V1][E->V2] = 1; 34 Gra->G[E->V2][E->V1] = 1; 35 } 36 Graph CreatGraph() 37 { 38 Edge E; 39 int N, M; 40 scanf("%d%d", &N, &M); 41 Graph G = BuildGraph(N); 42 G->Ne = M; 43 for (int i = 0; i < M; i++) 44 { 45 E = (Edge)malloc(sizeof(struct ENode)); 46 int V1, V2; 47 scanf("%d%d", &V1, &V2); 48 E->V1 = V1; 49 E->V2 = V2; 50 InsertEdge(E, G); 51 } 52 return G; 53 } 54 int IsEdge(Graph G, int V1, int V2) 55 { 56 return G->G[V1][V2] == 1; 57 } 58 int Collected[MaxVertexNum]; 59 void Initialize() 60 { 61 for (int i = 0; i < MaxVertexNum; i++) 62 Collected[i] = 0; 63 } 64 void DFS(Graph G,int i) 65 { 66 printf("%d ", i); 67 Collected[i] = 1; 68 for (int j = 0; j < G->Nv; j++) 69 { 70 if (!Collected[j]&&IsEdge(G,i,j)) 71 DFS(G, j); 72 } 73 } 74 75 int Queue[10]; 76 int Front = 1; 77 int Rear = 0; 78 int Size = 0; 79 int Succ(int num) 80 { 81 if (num == 10) 82 return 0; 83 else 84 return num; 85 } 86 void EnQueue(int num) 87 { 88 Rear = Succ(Rear + 1); 89 Queue[Rear] = num; 90 Size++; 91 } 92 int DeQueue() 93 { 94 int Value = Queue[Front]; 95 Front = Succ(Front + 1); 96 Size--; 97 return Value; 98 } 99 int IsEmpty() 100 { 101 return Size == 0; 102 } 103 void BFS(Graph G,int i) 104 { 105 EnQueue(i); 106 Collected[i] = 1; 107 while (!IsEmpty()) 108 { 109 int Tmp = DeQueue(); 110 printf("%d ", Tmp); 111 for (int j = 0; j < G->Nv; j++) 112 { 113 if (!Collected[j] && IsEdge(G, Tmp, j)) 114 { 115 EnQueue(j); 116 Collected[j] = 1; 117 } 118 } 119 } 120 } 121 int main() 122 { 123 Graph G=CreatGraph(); 124 for (int i = 0; i < G->Nv; i++) 125 { 126 if (!Collected[i]) 127 { 128 printf("{ "); 129 DFS(G, i); 130 printf("}"); 131 printf(" "); 132 } 133 } 134 Initialize(); 135 for (int i = 0; i < G->Nv; i++) 136 { 137 if (!Collected[i]) 138 { 139 printf("{ "); 140 BFS(G, i); 141 printf("}"); 142 printf(" "); 143 } 144 } 145 return 0; 146 }