• 【Rust】二叉搜索树查询极值


    环境

    • Time 2022-04-11
    • Rust 1.60.0

    前言

    说明

    基于标准库来学习各种数据结构,并不是从头实现数据结构,未考虑实现性能。

    特点

    相比较二叉树,二叉搜索树的左节点都比父节点小,右节点都比父节点大。
    使用迭代的方式查询二叉搜索树中的最大和最小值。

    示例

    节点定义

    type NodeRef<T> = Option<Box<Node<T>>>;
    struct Node<T: Ord + Debug> {
        value: T,
        left: NodeRef<T>,
        right: NodeRef<T>,
    }
    

    节点实现

    impl<T: Ord + Debug> Node<T> {
        fn new_node_ref(value: T) -> NodeRef<T> {
            Some(Box::new(Node {
                value,
                left: None,
                right: None,
            }))
        }
    }
    

    二叉搜索树定义

    struct BinarySearchTree<T: Ord + Debug> {
        root: NodeRef<T>,
    }
    

    二叉搜索树实现

    impl<T: Ord + Debug> BinarySearchTree<T> {
        fn new() -> Self {
            BinarySearchTree { root: None }
        }
        fn max_or_min<F>(&self, child: F) -> Option<&T>
        where
            F: Fn(&Box<Node<T>>) -> &NodeRef<T>,
        {
            let mut current = &self.root;
            while let Some(node) = current {
                current = match child(node) {
                    Some(_) => child(node),
                    None => return Some(&node.value),
                }
            }
            None
        }
    }
    

    最大值

    fn max(&self) -> Option<&T> {
        self.max_or_min(|node| &node.right)
    }
    

    最小值

    fn min(&self) -> Option<&T> {
        self.max_or_min(|node| &node.left)
    }
    

    使用示例

    fn main() {
        let mut tree = BinarySearchTree::new();
        vec![44, 22, 11, 33, 66, 66, 55, 77]
            .into_iter()
            .for_each(|e| tree.insert(e));
        tree.in_order();
        println!("{:?}", tree.search(&88));
        println!("{:?}", tree.search(&77));
        println!("{:?}", tree.max());
        println!("{:?}", tree.min());
    }
    

    总结

    使用迭代的方式实现了查询二叉搜索树极值的方法。

    附录

    源码

    use std::{cmp::Ordering, fmt::Debug};
    
    fn main() {
        let mut tree = BinarySearchTree::new();
        vec![44, 22, 11, 33, 66, 66, 55, 77]
            .into_iter()
            .for_each(|e| tree.insert(e));
        tree.in_order();
        println!("{:?}", tree.search(&88));
        println!("{:?}", tree.search(&77));
        println!("{:?}", tree.max());
        println!("{:?}", tree.min());
    }
    
    type NodeRef<T> = Option<Box<Node<T>>>;
    struct Node<T: Ord + Debug> {
        value: T,
        left: NodeRef<T>,
        right: NodeRef<T>,
    }
    
    impl<T: Ord + Debug> Node<T> {
        fn new_node_ref(value: T) -> NodeRef<T> {
            Some(Box::new(Node {
                value,
                left: None,
                right: None,
            }))
        }
    }
    
    struct BinarySearchTree<T: Ord + Debug> {
        root: NodeRef<T>,
    }
    
    impl<T: Ord + Debug> BinarySearchTree<T> {
        fn new() -> Self {
            BinarySearchTree { root: None }
        }
    
        fn in_order(&self) {
            let (mut stack, mut current) = (Vec::new(), &self.root);
            while current.is_some() || !stack.is_empty() {
                while let Some(node) = current {
                    stack.push(current);
                    current = &node.left;
                }
                current = stack.pop().unwrap();
                println!("{:?}", current.as_ref().unwrap().value);
                current = &current.as_ref().unwrap().right;
            }
        }
    
        fn insert(&mut self, value: T) {
            let mut current = &mut self.root;
            while let Some(node) = current {
                current = match value.cmp(&node.value) {
                    Ordering::Less => &mut node.left,
                    Ordering::Greater => &mut node.right,
                    // 相等元素不插入
                    Ordering::Equal => return,
                };
            }
            *current = Node::new_node_ref(value)
        }
        fn search(&self, value: &T) -> bool {
            let mut current = &self.root;
            while let Some(node) = current {
                current = match value.cmp(&node.value) {
                    Ordering::Less => &node.left,
                    Ordering::Greater => &node.right,
                    Ordering::Equal => return true,
                };
            }
            false
        }
    
        fn max(&self) -> Option<&T> {
            self.max_or_min(|node| &node.right)
        }
        fn min(&self) -> Option<&T> {
            self.max_or_min(|node| &node.left)
        }
    
        fn max_or_min<F>(&self, child: F) -> Option<&T>
        where
            F: Fn(&Box<Node<T>>) -> &NodeRef<T>,
        {
            let mut current = &self.root;
            while let Some(node) = current {
                current = match child(node) {
                    Some(_) => child(node),
                    None => return Some(&node.value),
                }
            }
            None
        }
    }
    
  • 相关阅读:
    saltstack总结-2018-0620
    我的书籍《Redis 源码日志》
    深入剖析 redis 主从复制
    深入剖析 redis AOF 持久化策略
    初探单点登录 SSO
    深入剖析 redis RDB 持久化策略
    深入剖析 redis 事件驱动
    memcached 源码阅读笔记
    Django 源码小剖: Django ORM 查询管理器
    Django 源码小剖: Django 对象关系映射(ORM)
  • 原文地址:https://www.cnblogs.com/jiangbo4444/p/16425639.html
Copyright © 2020-2023  润新知