• Flume自定义拦截器通过可配置字段实现分区


    1. 功能说明

    通过自定义拦截器实现使用数据中的时间字段作为分区。
    比如如下数据:

    {
       "type":"token_transfer",
       "token_address":"0x4774fed3f2838f504006be53155ca9cbddee9f0c",
       "from_address":"0xf6d6d1a0a0ab371bcda382e8069cbcaece713b3c",
       "to_address":"0x25e2e5d8ecc4fe46a9505079ed29266779dc7d6f",
       "value":1000000000000000,
       "transaction_hash":"0x6fd37836e1b70b4dbe8cfdaf5bace39df5281a813ea3ffe74d2f521d4222e01b",
       "log_index":5,
       "block_number":6851636,
       "block_timestamp":1604991499,
       "block_hash":"0xce8dcb6e82b6026b81fd9e720d7524d0e46cfb788751fded363dc5798ae29d86",
       "item_id":"token_transfer_0x6fd37836e1b70b4dbe8cfdaf5bace39df5281a813ea3ffe74d2f521d4222e01b_5",
       "item_timestamp":"2020-11-10T06:58:19Z"
    }
    

    2. 配置方法

    说明:从时间字段中提取年、月、日、小时,作为分区字段
    注意:
    (1)消息体必须是JSON格式
    (2)时间字段在JSON的第一层

    如果时间字段类型是时间戳, 如JSON格式的消息中存在时间戳字段currentTimestamp

    test2.sources.s1.interceptors = i1
    test2.sources.s1.interceptors.i1.type = com.apache.flume.interceptor.AutoPartitionInterceptor$Builder
    test2.sources.s1.interceptors.i1.timestampField = currentTimestamp:GMT+8
    

    timestampField: 标识是时间戳格式的字段
    currentTimestamp: JSON串中的字段名
    :GMT+8: 可选,默认使用GMT+0,可以自定义时间戳的时区

    如果时间字段类型是年月日,如JSON格式的消息中存在日期字段datetime

    test2.sources.s1.interceptors = i1
    test2.sources.s1.interceptors.i1.type = com.apache.flume.interceptor.AutoPartitionInterceptor$Builder
    test2.sources.s1.interceptors.i1.datetimeField = datetime
    

    datetimeField: 标识是日期时间格式的字段,注意,这里只支持yyyy-MM-dd HH:mm:ss
    datetime: JSON串中的字段名

    3. 测试

    3.1 准备数据

    {
       "type":"token_transfer",
       "token_address":"0x4774fed3f2838f5043155ca9cbddee9f0c",
       "from_address":"0xf6d6d1a0a0ab371be8069cbcaece713b3c",
       "to_address":"0x25e2e5d8ecc4fe49ed29266779dc7d6f",
       "value":1000000000000000,
       "transaction_hash":"0x6fd37835281a813ea3ffe74d2f521d4222e01b",
       "log_index":5,
       "block_number":6851636,
       "block_timestamp":1604991499,
       "block_hash":"0xce8dcb6e82b6026b81fd751fded363dc5798ae29d86",
       "item_id":"token_transfer_0x6fd37836e1b70b4dbe881a813ea3ffe74d2f521d4222e01b_5",
       "item_timestamp":"2020-11-10T06:58:19Z"
    }
    

    这里使用block_timestamp的时间戳作为分区字段,并且时区使用GMT+8时区。

    3.2 flume配置conf文件

    test2.sources = s1
    test2.sinks = k1
    test2.channels = c1
    test2.sources.s1.type = org.apache.flume.source.kafka.KafkaSource
    test2.sources.s1.batchSize = 100
    test2.sources.s1.batchDurationMillis = 3000
    test2.sources.s1.kafka.bootstrap.servers = hadoop200:9092,hadoop201:9092,hadoop202:9092
    test2.sources.s1.kafka.topics = test
    test2.sources.s1.kafka.consumer.group.id = bigdata
    test2.sources.s1.kafka.consumer.auto.offset.reset = latest
    test2.sources.s1.kafka.consumer.auto.commit.enable = false
    test2.sources.s1.kafka.consumer.timeout.ms = 15000
    test2.sources.s1.kafka.consumer.fetch.max.wait.ms = 5000
    test2.sources.s1.kafka.consumer.max.poll.records = 100
    test2.sources.s1.kafka.consumer.max.poll.interval.ms = 3000000
    
    
    # 提取pk_year,pk_month,pk_day,pk_hour
    test2.sources.s1.interceptors = i1
    test2.sources.s1.interceptors.i1.type = com.apache.flume.interceptor.AutoPartitionInterceptor$Builder
    test2.sources.s1.interceptors.i1.timestampField = block_timestamp:GMT+8
    
    test2.sinks.k1.type = hdfs
    test2.sinks.k1.hdfs.path = hdfs://hadoop200:8020//user/hive/warehouse/dt_ods.db/ods_test2/pk_year=%{pk_year}/pk_month=%{pk_month}/pk_day=%{pk_day}/pk_hour=%{pk_hour}
    test2.sinks.k1.hdfs.filePrefix = test2
    test2.sinks.k1.hdfs.fileSufix = .log
    test2.sinks.k1.hdfs.useLocalTimeStamp = true
    test2.sinks.k1.hdfs.batchSize = 500
    test2.sinks.k1.hdfs.fileType = DataStream
    test2.sinks.k1.hdfs.writeFormat = Text
    test2.sinks.k1.hdfs.rollSize = 2147483648
    test2.sinks.k1.hdfs.rollInterval = 0
    test2.sinks.k1.hdfs.rollCount = 0
    test2.sinks.k1.hdfs.idleTimeout = 120
    test2.sinks.k1.hdfs.minBlockReplicas = 1
    test2.channels.c1.type = file
    test2.channels.c1.checkpointDir = /home/hadoop/test/flume_job/chkDir/test2
    test2.channels.c1.dataDirs = /home/hadoop/test/flume_job/dataDir/test2
    test2.sources.s1.channels = c1
    test2.sinks.k1.channel = c1
    
    

    注意以下几个地方:
    test2.sources.s1.interceptors.i1.type: 配置自定义拦截器的名称
    test2.sources.s1.interceptors.i1.timestampField: 配置字符串中的时间戳字段
    test2.sinks.k1.hdfs.path: 后面的值中年月日的提取格式是%{pk_year}

    3.3 测试

    通过向kafka中发送上面的样例消息,在日志中输出如下:
    image

    在hdfs中可以看到分区时间,而样例中时间戳1604991499在GMT+8时区对应的日期是2020-11-10 14:58:19,所以分区正确。
    image

    4. 源码实现

    public class AutoPartitionInterceptor implements Interceptor {
    
        Logger log = LoggerFactory.getLogger(this.getClass());
        JsonParser parser = null;
        DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
    
        private String datetime_field = null;
        private String timestamp_field = null;
    
        public AutoPartitionInterceptor(String datetimeField, String timestampField){
            this.datetime_field = datetimeField;
            this.timestamp_field = timestampField;
        }
    
        @Override
        public void initialize() {
            parser = new JsonParser();
        }
    
        @Override
        public Event intercept(Event event) {
            //获取数据body
            byte[] body = event.getBody();
            Map<String,String> headerMap = event.getHeaders();
    
           if(null != timestamp_field && !"".equals(timestamp_field)){
                String[] fieldAndZoneId = timestamp_field.split(":");
                String fieldName = fieldAndZoneId[0];
                String zoneId = fieldAndZoneId.length == 2 ? fieldAndZoneId[1] : "GMT+0";
                parseTimestamp2Header(body,fieldName,zoneId,headerMap);
            }else if(null != datetime_field && !"".equals(datetime_field)){
                parseDatetime2Header(body,datetime_field,headerMap);
            }
    
           return event;
        }
    
        /**
         * 根据时区,将时间戳转换为年月日时分秒
         * @param time
         * @param zoneId
         * @return
         */
        private String getDateTimeByZoneId(String time,String zoneId){
                int len = time.length();
                long ts = 0;
                if(len == 10){
                    ts = Long.valueOf(time) * 1000;
                }else if(len == 13){
                    ts = Long.valueOf(time);
                }else {
                    ts = Long.valueOf(time.substring(0,10)) * 1000;
                }
            return dateTimeFormatter.format(LocalDateTime.ofInstant(Instant.ofEpochMilli(ts), ZoneId.of(zoneId)));
        }
    
    
        /**
         * 向Header中添加分区字段pk_year,pk_month,pk_day,pk_hour
         * @param body
         * @param datetimeFieldName
         * @param headerMap
         */
        private void parseDatetime2Header(byte[] body,String datetimeFieldName,Map<String,String> headerMap){
            String str = new String(body, Charsets.UTF_8);
            JsonElement element = parser.parse(str);
            try{
                JsonObject root = element.getAsJsonObject();
                log.debug(str);
    
                String dateTime = root.get(datetimeFieldName).getAsString().trim();
                String pk_day = dateTime.substring(0,10);
                String pk_year = pk_day.substring(0,4);
                String pk_month = pk_day.substring(0,7);
    
                //设置Header
                headerMap.put("pk_year",pk_year);
                headerMap.put("pk_month",pk_month);
                headerMap.put("pk_day",pk_day);
    
                if(dateTime.length() >= 13){
                    String pk_hour = pk_day + "_" + dateTime.substring(11,13);
                    headerMap.put("pk_hour",pk_hour);
                }
    
    
            }catch (Exception e){
                log.error(str);
                log.error(e.getMessage());
                e.printStackTrace();
            }
        }
    
    
        /**
         * 向Header中添加分区字段pk_year,pk_month,pk_day,pk_hour
         * @param body
         * @param timestampFieldName
         * @param zoneId
         * @param headerMap
         */
        private void parseTimestamp2Header(byte[] body,String timestampFieldName,String zoneId,Map<String,String> headerMap){
            String str = new String(body, Charsets.UTF_8);
            JsonElement element = parser.parse(str);
            try{
                JsonObject root = element.getAsJsonObject();
                String timestamp = root.get(timestampFieldName).getAsString().trim();
                String dateTime = getDateTimeByZoneId(timestamp, zoneId);
                String pk_day = dateTime.substring(0,10);
                String pk_year = pk_day.substring(0,4);
                String pk_month = pk_day.substring(0,7);
                String pk_hour = pk_day + "_" + dateTime.substring(11,13);
                //设置Header
                headerMap.put("pk_year",pk_year);
                headerMap.put("pk_month",pk_month);
                headerMap.put("pk_day",pk_day);
                headerMap.put("pk_hour",pk_hour);
    
            }catch (Exception e){
                log.error(str);
                log.error(e.getMessage());
                e.printStackTrace();
            }
        }
    
        @Override
        public List<Event> intercept(List<Event> events) {
            for (Event event : events) {
                intercept(event);
            }
            return events;
        }
    
        @Override
        public void close() {
    
        }
        public static class Builder implements  Interceptor.Builder{
    
            private String datetimeField = null;
            private String timestampField = null;
    
            @Override
            public Interceptor build() {
    
                return new AutoPartitionInterceptor(datetimeField,timestampField);
            }
    
            @Override
            public void configure(Context context) {
                datetimeField = context.getString("datetimeField");
                timestampField = context.getString("timestampField");
            }
        }
    
    }
    
  • 相关阅读:
    初中生数学题
    防御准备
    约数个数和「SDOI2015」
    暑期集训题目
    【模板】可持久化线段树 1(主席树)
    【模板】可持久化数组(可持久化线段树/平衡树)
    权值线段树&&线段树合并
    回家的路「SHOI 2012」
    Function「ZJOI2009」
    主席树-可持久化线段树学习笔记
  • 原文地址:https://www.cnblogs.com/30go/p/16333923.html
Copyright © 2020-2023  润新知