• [codeforces 1366D] Two Divisors


    题意

    (d_1, d_2)是 a 的因子, 找到 gcd((d_ 1 + d_2), a) = 1

    题解

    gcd(x, y) = gcd(x + y, y) = gcd(x, y + x) = gcd(x, (y^n)) = gcd((x^n), y) = gcd(x + y, x * y) = 1;

    证明:


    辗转相除法的逆用 gcd(x, y) = gcd(x - y, y) = gcd(x + y, y) 没啥区别


    设 x = ky + r(0 < r < x)

    gcd(x, y) = gcd(x, y * (y ^ {n - 1})) = gcd(ky + r, (y^{n-1}) * y + 0) = 1


    设 x = ky + r(0 < r < x)

    gcd(x, y) = gcd(x + y, y) = gcd((k + 1)y + r, x * y) = 1

    所以 gcd(a, (d_1 * d_2)) != 0就有答案


    所以我们直接找到 a 的两个最小的因子(不同的两个)

    只要两个因子都不 != 1即可

    代码

    #include <bits/stdc++.h>
    #define all(n) (n).begin(), (n).end()
    #define se second
    #define fi first
    #define pb push_back
    #define mp make_pair
    #define sqr(n) (n)*(n)
    #define rep(i,a,b) for(int i=a;i<=(b);++i)
    #define per(i,a,b) for(int i=a;i>=(b);--i)
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> PII;
    typedef vector<int> VI;
    typedef double db;
    
    const int N = 5e5 + 5, M = 1e7 + 5;
    
    int prime[M], tot, shu[M];
    int a[N], b[N], n, m;
    
    void init() {
        rep(i, 2, M) {
            if (shu[i] == 0)
                prime[++tot] = i;
    
            rep(j, 1, tot) {
                if ((ll)i * prime[j] > M) break;
                shu[i * prime[j]] = prime[j];
                if (i % prime[j] == 0) continue;
            }
        }
    }
    
    int main() {
        ios::sync_with_stdio(0); cin.tie(0);
        init();
        cin >> n;
        rep(i, 1, n) {
            cin >> m;
            if (shu[m] == 0) a[i] = b[i] = -1;
            else {
                int c = shu[m];
                while (m % c == 0) m /= c;
    
                if (m != 1) a[i] = c, b[i] = m;
                else a[i] = b[i] = -1;
            }
        }
    
        rep(i, 1, n) cout << a[i] << ' ';
        cout << endl;
        rep(i, 1, n) cout << b[i] << ' ';
    
        return 0;
    }
    
  • 相关阅读:
    自动装箱和==和equals
    4.1 java 类加载器
    23种设计模式
    ionic2打包 配置路径
    ionic2 native app 更新用户头像暨文件操作
    Spring Security三种认证
    maven设置本地仓库地址和设置国内镜像
    ps选框工具全解
    最长公共子序列问题
    内部排序算法的稳定性
  • 原文地址:https://www.cnblogs.com/2aptx4869/p/13158087.html
Copyright © 2020-2023  润新知