• orocos_kdl学习(一):坐标系变换


      KDL中提供了点(point)、坐标系(frame)、刚体速度(twist),以及6维力/力矩(wrench)等基本几何元素,具体可以参考 Geometric primitives 文档。

     Creating a Frame, Vector and Rotation

      PyKDL中创建一个坐标系时有下面4种构造函数:

    __init__()         # Construct an identity frame
    
    __init__(rot, pos) # Construct a frame from a rotation and a vector
    # Parameters:    
    # pos (Vector) – the position of the frame origin
    # rot (Rotation) – the rotation of the frame
    
    __init__(pos)      # Construct a frame from a vector, with identity rotation
    # Parameters:     
    # pos (Vector) – the position of the frame origin
    
    __init__(rot)      # Construct a frame from a rotation, with origin at 0, 0, 0
    # Parameters:    
    # rot (Rotation) – the rotation of the frame

      下面是一个例子:

    #! /usr/bin/env python
    
    import PyKDL
    
    # create a vector which describes both a 3D vector and a 3D point in space
    v = PyKDL.Vector(1,3,5)
    
    # create a rotation from Roll Pitch, Yaw angles
    r1 = PyKDL.Rotation.RPY(1.2, 3.4, 0)
    
    # create a rotation from ZYX Euler angles
    r2 = PyKDL.Rotation.EulerZYX(0, 1, 0)
    
    # create a rotation from a rotation matrix
    r3 = PyKDL.Rotation(1,0,0, 0,1,0, 0,0,1)
    
    # create a frame from a vector and a rotation
    f = PyKDL.Frame(r2, v)
    
    print f

      结果将如下所示,前9个元素为代表坐标系姿态的旋转矩阵,后三个元素为坐标系f的原点在参考坐标系中的坐标。

    [[    0.540302,           0,    0.841471;
                0,           1,           0;
        -0.841471,           0,    0.540302]
    [           1,           3,           5]]

      根据机器人学导论(Introduction to Robotics Mechanics and Control)附录中的12种欧拉角表示方法,ZYX欧拉角代表的旋转矩阵为:

      代入数据验证,KDL的计算与理论一致。

     Extracting information from a Frame, Vector and Rotation

      PyKDL中坐标系类Frame的成员M为其旋转矩阵,p为其原点坐标。

    #! /usr/bin/env python
    
    import PyKDL
    
    # frame
    f = PyKDL.Frame(PyKDL.Rotation.RPY(0,1,0),
                    PyKDL.Vector(3,2,4))
    
    # get the origin (a Vector) of the frame
    origin = f.p
    
    # get the x component of the origin
    x = origin.x()
    x = origin[0]
    print x
    
    # get the rotation of the frame
    rot = f.M
    print rot
    
    # get ZYX Euler angles from the rotation
    [Rz, Ry, Rx] = rot.GetEulerZYX()
    print Rz,Ry,Rx
    
    # get the RPY (fixed axis) from the rotation
    [R, P, Y] = rot.GetRPY()
    print R,P,Y

      将上述获取到的数据打印出来,结果如下:

    3.0
    [    0.540302,           0,    0.841471;
                0,           1,           0;
        -0.841471,           0,    0.540302]
    0.0 1.0 0.0
    0.0 1.0 0.0

       注意GetEulerZYX和GetRPY的结果是一样的,这其实不是巧合。因为坐标系的旋转有24种方式(本质上只有12种结果):绕自身坐标系旋转有12种方式(欧拉角),绕固定参考坐标系旋转也有12种方式(RPY就是其中一种)。EulerZYX按照Z→Y→X的顺序绕自身坐标轴分别旋转$alpha$、$eta$、$gamma$角;RPY按照X→Y→Z的顺序绕固定坐标系旋转$gamma$、$eta$、$alpha$角,这两种方式最后得到的旋转矩阵是一样的。

    Transforming a point

      frame既可以用来描述一个坐标系的位置和姿态,也可以用于变换。下面创建了一个frame,然后用其对一个空间向量或点进行坐标变换:

    #! /usr/bin/env python
    
    import PyKDL
    
    # define a frame
    f = PyKDL.Frame(PyKDL.Rotation.RPY(0,1,0),
                    PyKDL.Vector(3,2,4))
    
    # define a point
    p = PyKDL.Vector(1, 0, 0)
    print p
    
    # transform this point with f
    p = f * p
    print p

    Creating from ROS types

      tf_conversions这个package包含了一系列转换函数,用于将tf类型的数据(point, vector, pose, etc) 转换为与其它库同类型的数据,比如KDL和Eigen。用下面的命令在catkin_ws/src中创建一个测试包:

    catkin_create_pkg test rospy tf geometry_msgs

      test.py程序如下(注意修改权限chmod +x test.py):

    #! /usr/bin/env python
    import rospy
    import PyKDL
    from tf_conversions import posemath
    from geometry_msgs.msg import Pose
    
    # you have a Pose message
    pose = Pose()
    
    pose.position.x = 1
    pose.position.y = 1
    pose.position.z = 1
    pose.orientation.x = pose.orientation.y = pose.orientation.z = 0
    pose.orientation.w = 1
    
    # convert the pose into a kdl frame
    f1 = posemath.fromMsg(pose)
    
    # create another kdl frame
    f2 = PyKDL.Frame(PyKDL.Rotation.RPY(0,1,0),
                     PyKDL.Vector(3,2,4))
    
    # Combine the two frames
    f = f1 * f2
    print f
    
    [x, y, z, w] = f.M.GetQuaternion()
    print x,y,z,w
    
    # and convert the result back to a pose message
    pose = posemath.toMsg(f)
    
    pub = rospy.Publisher('pose', Pose, queue_size=1)
    rospy.init_node('test', anonymous=True)
    rate = rospy.Rate(1) # 1hz
    
    while not rospy.is_shutdown():
        pub.publish(pose)
        rate.sleep()

      通过posemath.toMsg可以将KDL中的frame转换为geometry_msgs/Pose类型的消息。最后为了验证,创建了一个Publisher将这个消息发布到pose话题上。使用catkin_make编译后运行结果如下:

    参考:

    KDL Geometric primitives

    从URDF到KDL(C++&Python)

    PyKDL 1.0.99 documentation

    Orocos Kinematics and Dynamics

    kdl / Tutorials / Frame transformations (Python)

  • 相关阅读:
    redis应用场景
    redis 持久化
    vue.jsv-if 的key值问题
    laravel 上线注意事项 (ubuntu lamp)
    laravel 不同表用户登录,后台跳转问题
    Laravel 5.5 不同用户表登录认证(前后台分离)
    记录laravel 数据填充问题
    Git 版本控制器详解
    Ubuntu Apache多站点配置
    Spring的注解@Qualifier小结
  • 原文地址:https://www.cnblogs.com/21207-iHome/p/8312854.html
Copyright © 2020-2023  润新知