• 卡尔曼滤波— Constant Velocity Model


    假设你开车进入隧道,GPS信号丢失,现在我们要确定汽车在隧道内的位置。汽车的绝对速度可以通过车轮转速计算得到,汽车朝向可以通过yaw rate sensor(A yaw-rate sensor is a gyroscopic device that measures a vehicle’s angular velocity around its vertical axis. )得到,因此可以获得X轴和Y轴速度分量Vx,Vy

    首先确定状态变量,恒速度模型中取状态变量为汽车位置和速度:

    根据运动学定律(The basic idea of any motion models is that a mass cannot move arbitrarily due to inertia):

    由于GPS信号丢失,不能直接测量汽车位置,则观测模型为:

    卡尔曼滤波步骤如下图所示:

     1 # -*- coding: utf-8 -*-
     2 import numpy as np
     3 import matplotlib.pyplot as plt
     4 
     5 # Initial State x0
     6 x = np.matrix([[0.0, 0.0, 0.0, 0.0]]).T
     7 
     8 # Initial Uncertainty P0
     9 P = np.diag([1000.0, 1000.0, 1000.0, 1000.0])
    10 
    11 dt = 0.1 # Time Step between Filter Steps
    12 
    13 # Dynamic Matrix A
    14 A = np.matrix([[1.0, 0.0, dt, 0.0],
    15               [0.0, 1.0, 0.0, dt],
    16               [0.0, 0.0, 1.0, 0.0],
    17               [0.0, 0.0, 0.0, 1.0]])
    18 
    19 # Measurement Matrix
    20 # We directly measure the velocity vx and vy
    21 H = np.matrix([[0.0, 0.0, 1.0, 0.0],
    22               [0.0, 0.0, 0.0, 1.0]])
    23 
    24 # Measurement Noise Covariance
    25 ra = 10.0**2
    26 R = np.matrix([[ra, 0.0],
    27               [0.0, ra]])
    28 
    29 # Process Noise Covariance
    30 # The Position of the car can be influenced by a force (e.g. wind), which leads
    31 # to an acceleration disturbance (noise). This process noise has to be modeled
    32 # with the process noise covariance matrix Q.
    33 sv = 8.8
    34 G = np.matrix([[0.5*dt**2],
    35                [0.5*dt**2],
    36                [dt],
    37                [dt]])
    38 Q = G*G.T*sv**2
    39 
    40 I = np.eye(4)
    41 
    42 # Measurement
    43 m = 200 # 200个测量点
    44 vx= 20  # in X
    45 vy= 10  # in Y
    46 mx = np.array(vx+np.random.randn(m))
    47 my = np.array(vy+np.random.randn(m))
    48 measurements = np.vstack((mx,my))
    49 
    50 # Preallocation for Plotting
    51 xt = []
    52 yt = []
    53 
    54 
    55 # Kalman Filter
    56 for n in range(len(measurements[0])):
    57     
    58     # Time Update (Prediction)
    59     # ========================
    60     # Project the state ahead
    61     x = A*x
    62     
    63     # Project the error covariance ahead
    64     P = A*P*A.T + Q
    65 
    66     
    67     # Measurement Update (Correction)
    68     # ===============================
    69     # Compute the Kalman Gain
    70     S = H*P*H.T + R
    71     K = (P*H.T) * np.linalg.pinv(S)
    72 
    73     # Update the estimate via z
    74     Z = measurements[:,n].reshape(2,1)
    75     y = Z - (H*x)                            # Innovation or Residual
    76     x = x + (K*y)
    77     
    78     # Update the error covariance
    79     P = (I - (K*H))*P
    80 
    81     
    82     # Save states for Plotting
    83     xt.append(float(x[0]))
    84     yt.append(float(x[1]))
    85 
    86 
    87 # State Estimate: Position (x,y)
    88 fig = plt.figure(figsize=(16,16))
    89 plt.scatter(xt,yt, s=20, label='State', c='k')
    90 plt.scatter(xt[0],yt[0], s=100, label='Start', c='g')
    91 plt.scatter(xt[-1],yt[-1], s=100, label='Goal', c='r')
    92 
    93 plt.xlabel('X')
    94 plt.ylabel('Y')
    95 plt.title('Position')
    96 plt.legend(loc='best')
    97 plt.axis('equal')
    98 plt.show()

    汽车在隧道中的估计位置如下图:

     参考

    Improving IMU attitude estimates with velocity data

    https://zhuanlan.zhihu.com/p/25598462

  • 相关阅读:
    换个角度思考问题
    云南印象
    子网掩码划分实例
    子网掩码划分工具下载
    实景地图
    AutoCAD图像输出(输出图像)技巧
    两种消费观念
    子网掩码划分计算方法及实例
    C/C++从入门到高手所有必备PDF书籍收藏
    WINCE6.0添加特定的软件键盘
  • 原文地址:https://www.cnblogs.com/21207-iHome/p/5274819.html
Copyright © 2020-2023  润新知