计算机有三个关键性机制:存储程序计算机,堆栈机制和中断机制
第一章中已经重点学习了存储程序的计算机,接下来我们重点学习堆栈机制和中断机制。
堆栈机制
堆栈机制是高级语言可以实现的基础机制,是C语言程序运行时必须使用的记录函数调用路径和参数存储的空间,他的具体作用有:记录函数调用框架,传递函数参数,保存返回值的地址,提供函数内部局部变量的存储空间等
堆栈相关的寄存器有:
1.ESP(堆栈指针寄存器)以及EBP(记录当前函数调用基址的基址指针寄存器)
2.CS:EIP:总是指向下一条的指令地址。顺序执行时,总是指向地址连续的下一条指令;跳转/分支执行时,CS:EIP的值会根据程序需要被修改。
3.EAX:保存返回值。如果有多个返回值,则返回一个内存地址。
堆栈相关操作:
push:栈顶地址减少4个字节,并将操作数放入栈顶存储单元
pop:栈顶地址增加四个字节,并将栈顶存储单元的内容放入操作数
call:将当前CS:EIP的值压入栈顶,CS;EIP指向被调用函数的入口地址
ret:从栈顶弹出原来保存在这里的CS:EIP的值,放入CS:EIP的值
enter和leave:一步对函数调用堆栈框架的建立和拆除进行封装
参数传递;从左到右依次压栈
中断机制实验
虚拟X86的cpu硬件平台搭建
本次实验在实验楼环境中进行,实验代码如下
cd LinuxKernel/linux-3.9.4
rm -rf mykernel
patch -p1 < ../mykernel_for_linux3.9.4sc.patch
make allnoconfig
make #编译内核
qemu -kernel arch/x86/boot/bzImage
搭建起来后内核的启动效果如下
在mykernel基础上完成一个简单的时间片轮转多道程序
在前面试验的基础上cd mykernel ,增加一个mypcb.h的头文件
mypcb.h
#define MAX_TASK_NUM 4
#define KERNEL_STACK_SIZE 1024*8
/* CPU-specific state of this task */
struct Thread {
unsigned long ip;
unsigned long sp;
};
typedef struct PCB{
int pid;
volatile long state;
char stack[KERNEL_STACK_SIZE];
/* CPU-specific state of this task */
struct Thread thread;
unsigned long task_entry;
struct PCB *next;
}tPCB;//pcb结构体定义
void my_schedule(void);
修改mymain.c文件如下
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"
tPCB task[MAX_TASK_NUM]; //PCB的数组task
tPCB * my_current_task = NULL; //当前task指针
volatile int my_need_sched = 0; //是否需要调度
void my_process(void);
void __init my_start_kernel(void) //mykernel内核代码入口
{
int pid = 0;
int i;
/* 初始化0号进程*/
task[pid].pid = pid;
task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
task[pid].next = &task[pid];
/*fork其他进程 */
for(i=1;i<MAX_TASK_NUM;i++)
{
memcpy(&task[i],&task[0],sizeof(tPCB));
task[i].pid = i;
task[i].state = -1;
task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
task[i].next = task[i-1].next;
task[i-1].next = &task[i];
}
/* 用task[0]开始0号进程 */
pid = 0;
my_current_task = &task[pid];
asm volatile(
"movl %1,%%esp
"
"pushl %1
"
"pushl %0
"
"ret
"
"popl %%ebp
"
:
: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/
);
}
void my_process(void)
{
int i = 0;
while(1)
{
i++;
if(i%10000000 == 0)
{
printk(KERN_NOTICE "this is process %d -
",my_current_task->pid);
if(my_need_sched == 1) //判断是否需要调度
{
my_need_sched = 0;
my_schedule();
}
printk(KERN_NOTICE "this is process %d +
",my_current_task->pid);
}
}
}
修改myinterrupt.c文件如下:
/*
* linux/mykernel/myinterrupt.c
*
* Kernel internal my_timer_handler
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"
extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;
/*
* Called by timer interrupt.
* it runs in the name of current running process,
* so it use kernel stack of current running process
*/
void my_timer_handler(void)
{
#if 1
if(time_count%1000 == 0 && my_need_sched != 1)
{
printk(KERN_NOTICE ">>>my_timer_handler here<<<
");
my_need_sched = 1;
}
time_count ++ ;
#endif
return;
}
void my_schedule(void)
{
tPCB * next;
tPCB * prev;
if(my_current_task == NULL
|| my_current_task->next == NULL)
{
return;
}
printk(KERN_NOTICE ">>>my_schedule<<<
");
/* schedule */
next = my_current_task->next;
prev = my_current_task;
if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
{
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<
",prev->pid,next->pid);
/* 进程切换 */
asm volatile(
"pushl %%ebp
" /* save ebp */
"movl %%esp,%0
" /* save esp */
"movl %2,%%esp
" /* restore esp */
"movl $1f,%1
" /* save eip */
"pushl %3
"
"ret
" /* restore eip */
"1: " /* next process start here */
"popl %%ebp
"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
return;
}
重新make编译后qemu窗口查看,得到如下结果:
遇到问题
1.make编译出错
2.重新启动后内核启动效果没有变化
解决方法
1.在mykernel目录下修改代码
2.换了一组新的内核代码,最开始使用的代码切换进程过程不完成