题目
解法
我们可以用容斥来求第二类斯特林数
我们知道, 第二类斯特林数(S(n, k))是(n)个元素放进(k)个无标号的盒子里, 不可以含有空的。 于是我们可以考虑可以含有空的,且盒子有标号, 情况下的数量, 这明显是(sumlimits_{j = 0}^{k}{k choose j}(k-j)^n)
于是, 根据容斥原理可得:(S(n, k) = frac{1}{k!}sum_{j = 0}^{k}(k-j)^n{k choose j}(-1)^i)
于是
[egin{aligned}
&sum_{i = 0}^{n}sum_{j = 0}^{i}S(i, j)\
&=sum_{i = 0}^{n}sum_{j = 0}^{i}S(i, j)\
&=sum_{i = 0}^{n}sum_{j = 0}^{n}2^jj!{frac{1}{j!}}sum_{k = 0}^{j}(j-k)^i(-1)^j{j choose k}\
&= sum_{i = 0}^{n}sum_{j = 0}^{n}2^jsum_{k = 0}^{j}(j-k)^i(-1)^jfrac{j!}{k!(j-k)!}\
&= sum_{i = 0}^{n}sum_{j = 0}^{n}2^jsum_{k = 0}^{j}(j-k)^i(-1)^jfrac{j!}{k!(j-k)!}\
&= sum_{i = 0}^{n}sum_{j = 0}^{n}2^jj!sum_{k = 0}^{j}(j-k)^i(-1)^jfrac{1}{k!(j-k)!}\
&= sum_{i = 0}^{n}sum_{j = 0}^{n}2^jj!sum_{k = 0}^{j}(-1)^jfrac{(j-k)^i}{k!(j-k)!}\
&= sum_{i = 0}^{n}sum_{j = 0}^{n}2^jj!sum_{k = 0}^{j}(-1)^jfrac{1}{k!}frac{(j-k)^i}{(j-k)!} \
&= sum_{j = 0}^{n}2^jj!sum_{k = 0}^{j}(-1)^jfrac{1}{k!}sum_{i = 0}^{n}frac{(j-k)^i}{(j-k)!}
end{aligned}
]
于是, 这里出现了一个感人肺腑的卷积
我们设(a(x) = frac{1}{x!}(-1)^x), (b(x) = sum_{k = 0}^{n}{k^{x}over k!})
于是答案是(sumlimits_{j = 0}^{n}sumlimits_{k = 0}^{j}a(k)b(j-k))
(b)可以用等比数列求和公式求出
代码
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = 998244353LL;
const int N = 400010;
inline LL power(LL a, LL n, LL mod)
{ LL Ans = 1;
a %= mod;
while (n)
{ if (n & 1) Ans = (Ans * a) % mod;
a = (a * a) % mod;
n >>= 1;
}
return Ans;
}
inline LL Plus(LL a, LL b) { return a + b > mod ? a + b - mod : a + b; }
inline LL Minus(LL a, LL b) { return a - b < 0 ? a - b + mod : a - b; }
struct Mul
{ int Len, Bit;
LL wn[N];
int rev[N];
void getReverse()
{ for (int i = 0; i < Len; i++)
rev[i] = (rev[i>>1] >> 1) | ((i&1) * (Len >> 1));
}
void NTT(LL * a, int opt)
{ getReverse();
for (int i = 0; i < Len; i++)
if (i < rev[i]) swap(a[i], a[rev[i]]);
int cnt = 0;
for (int i = 2; i <= Len; i <<= 1)
{ cnt++;
for (int j = 0; j < Len; j += i)
{ LL w = 1LL;
for (int k = 0; k < (i>>1); k++)
{ LL x = a[j + k];
LL y = (w * a[j + k + (i>>1)]) % mod;
a[j + k] = Plus(x, y);
a[j + k + (i>>1)] = Minus(x, y);
w = (w * wn[cnt]) % mod;
}
}
}
if (opt == -1)
{ reverse(a + 1, a + Len);
LL num = power(Len, mod-2, mod);
for (int i = 0; i < Len; i++)
a[i] = (a[i] * num) % mod;
}
}
void getLen(int l)
{ Len = 1, Bit = 0;
for (; Len <= l; Len <<= 1) Bit++;
}
void init()
{ for (int i = 0; i < 23; i++)
wn[i] = power(3, (mod-1) / (1LL << i), mod);
}
} Calc;
LL fac[N], ifac[N];
LL A[N], B[N], C[N];
int main()
{ int n;
scanf("%d", &n);
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i-1] * i % mod;
ifac[n] = power(fac[n], mod-2, mod);
for (int i = n-1; i >= 0; i--)
ifac[i] = ifac[i+1] * (i+1) % mod;
for (int i = 0; i <= n; i++)
A[i] = (i & 1 ? Minus(mod, 1) : 1) * ifac[i] % mod;
B[0] = 1;
B[1] = n + 1;
for (int i = 2; i <= n; i++)
B[i] = (power(i, n+1, mod) + mod - 1) % mod * power(i-1, mod-2, mod) % mod * ifac[i] % mod;
Calc.init();
Calc.getLen(n * 2 + 1);
Calc.NTT(A, 1);
Calc.NTT(B, 1);
for (int i = 0; i < Calc.Len; i++)
C[i] = A[i] * B[i] % mod;
Calc.NTT(C, -1);
LL Ans = 0;
for (int i = 0; i <= n; i++)
Ans = Plus(Ans, (power(2LL, i, mod) * fac[i] % mod * C[i] % mod));
printf("%lld
", Ans);
return 0;
}