• Image Processing, Analysis & and Machine Vision


    Contents目录

    • Chapter 0: Introduction to the companion book本辅导书简介
    • Chapter 1: Introduction 简介
      • Viewing an image: image_view_demo 查看一张图像:image_view_demo

                    

    • Chapter 2: The image, its representations and properties
      • Displaying a coarse binary image: coarse_pixels_draw

                    

      • Distance transform, an example: dist_trans_demo
      • Border of a region, an example: region_border_demo
    • Chapter 3: The image, its mathematical and physical background
      • Convolution, shift-multiply-add approach: conv_demo
      • Discrete Fourier Transform: dft_edu
      • Inverse DFT: idft_edu
      • 1D Discrete Fourier Transform: dft1d_demo
      • 2D Discrete Fourier Transform: dft2d_demo
      • Basis functions for the 2D Discrete Cosine Transform: dct2base
      • Principal Component Analysis: pca
    • Chapter 4: Data structures for image analysis
      • MATLAB/ data structures: structures
      • Displaying image values: showim_values
      • Co-occurrence matrix: cooc 灰度共生矩阵
      • Integral image construction: integralim
    • Chapter 5: Image pre-processing
      • Grayscale transformation, histogram equalization: hist_equal
      • Geometric transformation: imgeomt
      • Smoothing using a rotating mask: rotmask
      • Image sharpening by Laplacian: imsharpen
      • Harris corner detector: harris
      • Frequency filtering: buttfilt
    • Chapter 6: Segmentation I
      • Iterative threshold selection: imthresh
      • Line detection using Hough transform: hough_lines
      • Dynamic programming boundary tracing: dpboundary
      • Region merging via boundary melting: regmerge
      • Removal of small regions: remsmall
    • Chapter 7: Segmentation II
      • Mean shift segmentation: meanshsegm
      • Active contours (snakes): snake
      • Gradient vector flow snakes: mgvf
      • Level sets: levelset
      • Graph cut segmentation: GraphCut
    • Chapter 8: Shape representation and description
      • B-spline interpolation: bsplineinterp
      • Convex hull construction: convexhull
      • Region descriptors: regiondescr
      • Boundary descriptors: boundarydescr
    • Chapter 9: Object recognition
      • Maximum probability classification for normal data: maxnormalclass
      • Linear separability and basic classifiers: linsep_demo
      • Recognition of hand-written numerals: ocr_demo
      • Adaptive boosting: adaboost
    • Chapter 10: Image understanding
      • Random sample consensus: ransac
      • Gaussian mixture model estimation: gaussianmixture
      • Point distribution models: pointdistrmodel
      • Active shape model fit: asmfit
    • Chapter 11: 3D vision, geometry
      • Homography estimation from point correspondences---DLT method: u2Hdlt
      • Mathematical description of the camera: cameragen
      • Visualize a camera in a 3D plot: showcams
      • Decomposition of the projection matrix P: P2KRtC
      • Isotropic point normalization: pointnorm
      • Fundamental matrix---8-point algorithm: u2Fdlt
      • 3D point reconstruction---linear method: uP2Xdlt
    • Chapter 12: Use of 3D vision
      • Iterative closest point matching: vtxicrp
    • Chapter 13: Mathematical morphology
      • Top hat transformation: tophat
      • Object detection using opening: objdetect
      • Sequential thinning: thinning
      • Ultimate erosion: ulterosion
      • Binary granulometry: granulometry
      • Watershed segmentation: wshed
    • Chapter 14: Image data compression
      • Huffman code: huffman
      • Predictive compression: dpcm
      • JPEG compression pictorially, step by step: jpegcomp_demo
    • Chapter 15: Texture
      • Haralick texture descriptors: haralick
      • Wavelet texture descriptors: waveletdescr
      • Texture based segmentation: texturesegm
      • L-system interpreter: lsystem
    • Chapter 16: Motion analysis
      • Adaptive background modeling by using a mixture of Gaussians: bckggm
      • Particle filtering: particle_filtering
      • Importance sampling: importance_sampling
      • Kernel-based tracking: kernel_based_tracking

    [Home][Contact]
    Last modified at 15:56, 28 April 2014 CEST.

    关于机器视觉与机器学习的大量资源及书籍 可在线阅读:http://blog.exbot.net/archives/48

    demo videos:http://visionbook.felk.cvut.cz/demos.html

  • 相关阅读:
    log4j2RCE复现
    Kernel panic: VFS: Unable to mount root fs on 08:08 解决方法
    关于QEMU/KVM中无法开启eth0网卡解决方法
    20212022年寒假学习进度04
    20212022年寒假学习进度05
    每日学习
    课程总结和加分项
    每日学习
    20212022年寒假学习进度03
    20212022年寒假学习进度01
  • 原文地址:https://www.cnblogs.com/2008nmj/p/9187614.html
Copyright © 2020-2023  润新知