• 暑假集训Day 4 P4163 [SCOI2007]排列 (状压dp)


    状压dp

    看到s的长度不超过10就很容易想到是状压dp了
    但是这个题的状态转移方程比较特殊)

    题目大意

    给一个数字串 s 和正整数 d, 统计 s 有多少种不同的排列能被 d 整除(可以有前导 0)。例如 123434有 90 种排列能被 2 整除,其中末位为 2 的有 30 种,末位为 4 的有 60种。

    输入格式

    输入第一行是一个整数 T,表示测试数据的个数,以下每行一组 s 和 d,中间用空格隔开。s 保证只包含数字 0,1,2,3,4,5,6,7,8,9

    输出格式

    每个数据仅一行,表示能被 d 整除的排列的个数。

    输入样例

    7
    000 1
    001 1
    1234567890 1
    123434 2
    1234 7
    12345 17
    12345678 29

    输出样例

    1
    3
    3628800
    90
    3
    6
    1398

    算法分析

    • 这个题的思路还是蛮偏的,,,,但是很好理解
      我们将f数组的第一维定义为状态 (最大值为1<<10) 第二维定义为 余数
      那么问题就来了 如果我们把第一维定义为状态的话 应该是怎样的状态呢?
      还是一样举个栗子
      给出的数为1234 我们就定义一个1<<4大小的状态 然后每一位表示对应该位置的数是否已经添加
      比如0101就表示此时我们已经添加了2和4还有1和3没有添加进去 下一次可以选择添加进去1或者3
    • 循环顺序
      第一层循环状态 第二层循环余数 第三层循环下一个添加的数字
      则转移方程就是f[i|1<<k][(j * 10+k)%d] += f[i][j]
      第一维是i|1<<k 显然就是加上k位置的数字
      第二维是(j * 10+k)%d 即上一位的余数再加上当前位 然后整个再%d
      *转移条件
      如果当前状态向下个状态转移的时候 即加上第k位置数字 这个已经转移过了 那么显然就不能再加一次了
      判断语句就是
    if((i & (1<<k)) == 0)
    

    此时状态为i 想要转移的状态为i|1<<k 如果i&1<<k != 0 即表示i在第k位为1 也就是表示这个状态已经转移过了 所以要保证==0的时候再转移

    • 需要注意有的数字是重复的 显然根据排列组合的规律 除以这个重复数字的全排列即可 即除以该数的阶乘(可以预处理或者写个函数 这里提供函数的代码)

    代码展示

    
    
    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1e5+10;
    int f[1<<10][1001],T,a[maxn],d,cnt[11];
    char s[maxn];
    
    int jc(int x){
    	int u = 1;
    	for(int i = 1;i <= x;++i)u *= i;
    	return u;
    }
    
    int main(){
    	scanf("%d",&T);
    	while(T--){
    		scanf("%s%d",s,&d);
    		int len = strlen(s);
    		memset(cnt,0,sizeof(cnt));
    		memset(f,0,sizeof(f));
    		for(int i = 0;i < len;++i){
    			a[i] = s[i] - '0';
    			cnt[a[i]]++;
    		}
    		int maxs = (1<<len)-1;
    		f[0][0] = 1;
    		for(int i = 0;i <= maxs;++i){
    			for(int j = 0;j < d;++j)
    				if(f[i][j])
    					for(int k = 0;k < len;++k)
    						if((i & (1<<k)) == 0)
    							f[i|(1<<k)][(j*10+a[k])%d] += f[i][j];
    		}
    		int ans = f[maxs][0];
    		for(int i = 0;i <= 9;++i){
    			if(cnt[i]!=0)ans/=jc(cnt[i]);
    		}
    		printf("%d
    ",ans);
    	}
    	return 0;
    }
    
    

    谢谢观看
    点个关注>)<

  • 相关阅读:
    动态规划之矩阵连乘
    常见的开放符号服务器
    QT中的宏定义
    QT Creator项目路径设置
    批处理-日常小功能用法记录
    Qt Creator快捷键记录
    利用Navicat premium实现将数据从Oracle导入到MySQL
    php BCmath 封装类
    PHP 反射类
    Html标签生成类
  • 原文地址:https://www.cnblogs.com/2004-08-20/p/13195259.html
Copyright © 2020-2023  润新知