所有的浮点数值计算都遵循IEEE 754规范,用于表示溢出和出错情况的三个特殊的浮点数值,±inf、NaN。
源码注释:
If the argument is {@code 0x7ff0000000000000L}, the result is positive infinity.
If the argument is {@code 0xfff0000000000000L}, the result is negative infinity.
If the argument is any value in the range
* {@code 0x7ff0000000000001L} through
* {@code 0x7fffffffffffffffL} or in the range
* {@code 0xfff0000000000001L} through
* {@code 0xffffffffffffffffL}, the result is a NaN.
Demo:1.0、0.0和0的浮点数值输出:
double d1 = Double.parseDouble("1.0"); BigDecimal bd1 = new BigDecimal(d1); System.out.println(bd1);//1 double d2 = Double.parseDouble("0.0"); BigDecimal bd2 = new BigDecimal(d2); System.out.println(bd2);//0 double d3 = Double.parseDouble("0"); BigDecimal bd3 = new BigDecimal(d3); System.out.println(bd3);//0
从结果可以看出,1.0、0.0、0都不能使用二进制来准确的表示,所以只能使用最接近的浮点值来代替。
1)1.0/0的结果是什么?为什么?
Infinity
原因:类型不同,低精度向高精度转化,相当于1.0/0.0(public static final double POSITIVE_INFINITY = 1.0 / 0.0;和Double.LongBitsToRawLongDouble(0x7ff0000000000000L))。
通过doubleToRawLongBits方法来证明:
double a = 1.0 / 0; long b = Double.doubleToRawLongBits(a); System.out.println(b);//9218868437227405312 Long c=0x7ff0000000000000L; System.out.println(c.longValue());//9218868437227405312
另一种解释:无限接近于1的数除以无限接近于0的数,举例:1/0.1=10;1/0.01=100;1/0.001=1000;1/0.0001=10000......无穷大。
2)0/0的结果是什么?为什么?
ArithmeticException
原因:类型相同,无需转化。
文档说明,Thrown when an exceptional arithmetic condition has occurred. For example, an integer "divide by zero" throws an instance of this class.